![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > mon1pcl | Structured version Unicode version |
Description: Monic polynomials are polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
uc1pcl.p |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
uc1pcl.b |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
mon1pcl.m |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mon1pcl |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uc1pcl.p |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | uc1pcl.b |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | eqid 2452 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | eqid 2452 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | mon1pcl.m |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | eqid 2452 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 1, 2, 3, 4, 5, 6 | ismon1p 21742 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 7 | simp1bi 1003 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1592 ax-4 1603 ax-5 1671 ax-6 1710 ax-7 1730 ax-8 1760 ax-9 1762 ax-10 1777 ax-11 1782 ax-12 1794 ax-13 1954 ax-ext 2431 ax-sep 4516 ax-nul 4524 ax-pow 4573 ax-pr 4634 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 967 df-tru 1373 df-ex 1588 df-nf 1591 df-sb 1703 df-eu 2265 df-mo 2266 df-clab 2438 df-cleq 2444 df-clel 2447 df-nfc 2602 df-ne 2647 df-ral 2801 df-rex 2802 df-rab 2805 df-v 3074 df-sbc 3289 df-dif 3434 df-un 3436 df-in 3438 df-ss 3445 df-nul 3741 df-if 3895 df-sn 3981 df-pr 3983 df-op 3987 df-uni 4195 df-br 4396 df-opab 4454 df-mpt 4455 df-id 4739 df-xp 4949 df-rel 4950 df-cnv 4951 df-co 4952 df-dm 4953 df-iota 5484 df-fun 5523 df-fv 5529 df-slot 14291 df-base 14292 df-mon1 21730 |
This theorem is referenced by: mon1puc1p 21750 deg1submon1p 21752 ply1rem 21763 fta1glem1 21765 fta1glem2 21766 mon1psubm 29717 |
Copyright terms: Public domain | W3C validator |