MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moi2 Structured version   Unicode version

Theorem moi2 3280
Description: Consequence of "at most one." (Contributed by NM, 29-Jun-2008.)
Hypothesis
Ref Expression
moi2.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
moi2  |-  ( ( ( A  e.  B  /\  E* x ph )  /\  ( ph  /\  ps ) )  ->  x  =  A )
Distinct variable groups:    x, A    ps, x
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem moi2
StepHypRef Expression
1 moi2.1 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
21mob2 3279 . . . 4  |-  ( ( A  e.  B  /\  E* x ph  /\  ph )  ->  ( x  =  A  <->  ps ) )
323expa 1196 . . 3  |-  ( ( ( A  e.  B  /\  E* x ph )  /\  ph )  ->  (
x  =  A  <->  ps )
)
43biimprd 223 . 2  |-  ( ( ( A  e.  B  /\  E* x ph )  /\  ph )  ->  ( ps  ->  x  =  A ) )
54impr 619 1  |-  ( ( ( A  e.  B  /\  E* x ph )  /\  ( ph  /\  ps ) )  ->  x  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   E*wmo 2284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111
This theorem is referenced by:  fsum  13554  fprod  13760  txcn  20253  haustsms2  20761
  Copyright terms: Public domain W3C validator