Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  modval Structured version   Unicode version

Theorem modval 12034
 Description: The value of the modulo operation. The modulo congruence notation of number theory, modulo , can be expressed in our notation as . Definition 1 in Knuth, The Art of Computer Programming, Vol. I (1972), p. 38. Knuth uses "mod" for the operation and "modulo" for the congruence. Unlike Knuth, we restrict the second argument to positive reals to simplify certain theorems. (This also gives us future flexibility to extend it to any one of several different conventions for a zero or negative second argument, should there be an advantage in doing so.) (Contributed by NM, 10-Nov-2008.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
modval

Proof of Theorem modval
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6284 . . . . 5
21fveq2d 5852 . . . 4
32oveq2d 6293 . . 3
4 oveq12 6286 . . 3
53, 4mpdan 666 . 2
6 oveq2 6285 . . . . 5
76fveq2d 5852 . . . 4
8 oveq12 6286 . . . 4
97, 8mpdan 666 . . 3
109oveq2d 6293 . 2
11 df-mod 12033 . 2
12 ovex 6305 . 2
135, 10, 11, 12ovmpt2 6418 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 367   wceq 1405   wcel 1842  cfv 5568  (class class class)co 6277  cr 9520   cmul 9526   cmin 9840   cdiv 10246  crp 11264  cfl 11962   cmo 12032 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pr 4629 This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-rab 2762  df-v 3060  df-sbc 3277  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-sn 3972  df-pr 3974  df-op 3978  df-uni 4191  df-br 4395  df-opab 4453  df-id 4737  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-iota 5532  df-fun 5570  df-fv 5576  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-mod 12033 This theorem is referenced by:  modvalr  12035  modcl  12036  mod0  12039  modge0  12042  modlt  12043  moddiffl  12044  modfrac  12046  modmulnn  12050  zmodcl  12052  modid  12057  modcyc  12068  modadd1  12070  modmul1  12079  moddi  12093  modsubdir  12094  modirr  12096  iexpcyc  12315  digit2  12341  dvdsmod  14250  divalgmod  14271  modgcd  14381  bezoutlem3  14385  prmdiv  14522  odzdvds  14529  fldivp1  14623  odmodnn0  16886  odmod  16892  gexdvds  16926  zringlpirlem3  18822  sineq0  23204  efif1olem2  23220  lgseisenlem4  24006  dchrisumlem1  24053  ostth2lem2  24198  gxmodid  25681  sineq0ALT  36748  ltmod  36993  fourierswlem  37362
 Copyright terms: Public domain W3C validator