MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modprm0 Structured version   Visualization version   Unicode version

Theorem modprm0 14835
Description: For two positive integers less than a given prime number there is always a nonnegative integer (less than the given prime number) so that the sum of one of the two positive integers and the other of the positive integers multiplied by the nonnegative integer is 0 ( modulo the given prime number). (Contributed by Alexander van der Vekens, 17-May-2018.)
Assertion
Ref Expression
modprm0  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 )
Distinct variable groups:    j, I    j, N    P, j

Proof of Theorem modprm0
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 reumodprminv 14834 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  E! r  e.  ( 1 ... ( P  -  1 ) ) ( ( N  x.  r )  mod 
P )  =  1 )
2 reurex 2995 . . . 4  |-  ( E! r  e.  ( 1 ... ( P  - 
1 ) ) ( ( N  x.  r
)  mod  P )  =  1  ->  E. r  e.  ( 1 ... ( P  -  1 ) ) ( ( N  x.  r )  mod 
P )  =  1 )
3 prmz 14705 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  P  e.  ZZ )
433ad2ant1 1051 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  P  e.  ZZ )
54adantl 473 . . . . . . . . 9  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  P  e.  ZZ )
6 elfzelz 11826 . . . . . . . . . . 11  |-  ( r  e.  ( 1 ... ( P  -  1 ) )  ->  r  e.  ZZ )
76adantr 472 . . . . . . . . . 10  |-  ( ( r  e.  ( 1 ... ( P  - 
1 ) )  /\  ( ( N  x.  r )  mod  P
)  =  1 )  ->  r  e.  ZZ )
8 elfzoelz 11947 . . . . . . . . . . 11  |-  ( I  e.  ( 1..^ P )  ->  I  e.  ZZ )
983ad2ant3 1053 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  I  e.  ZZ )
10 zmulcl 11009 . . . . . . . . . 10  |-  ( ( r  e.  ZZ  /\  I  e.  ZZ )  ->  ( r  x.  I
)  e.  ZZ )
117, 9, 10syl2an 485 . . . . . . . . 9  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( r  x.  I )  e.  ZZ )
125, 11zsubcld 11068 . . . . . . . 8  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( P  -  ( r  x.  I ) )  e.  ZZ )
13 prmnn 14704 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  NN )
14133ad2ant1 1051 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  P  e.  NN )
1514adantl 473 . . . . . . . 8  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  P  e.  NN )
16 zmodfzo 12152 . . . . . . . 8  |-  ( ( ( P  -  (
r  x.  I ) )  e.  ZZ  /\  P  e.  NN )  ->  ( ( P  -  ( r  x.  I
) )  mod  P
)  e.  ( 0..^ P ) )
1712, 15, 16syl2anc 673 . . . . . . 7  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( ( P  -  ( r  x.  I ) )  mod 
P )  e.  ( 0..^ P ) )
188zred 11063 . . . . . . . . . . 11  |-  ( I  e.  ( 1..^ P )  ->  I  e.  RR )
19183ad2ant3 1053 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  I  e.  RR )
2019adantl 473 . . . . . . . . 9  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  I  e.  RR )
2113nnred 10646 . . . . . . . . . . . 12  |-  ( P  e.  Prime  ->  P  e.  RR )
22213ad2ant1 1051 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  P  e.  RR )
2322adantl 473 . . . . . . . . . 10  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  P  e.  RR )
246zred 11063 . . . . . . . . . . . 12  |-  ( r  e.  ( 1 ... ( P  -  1 ) )  ->  r  e.  RR )
2524adantr 472 . . . . . . . . . . 11  |-  ( ( r  e.  ( 1 ... ( P  - 
1 ) )  /\  ( ( N  x.  r )  mod  P
)  =  1 )  ->  r  e.  RR )
26 remulcl 9642 . . . . . . . . . . 11  |-  ( ( r  e.  RR  /\  I  e.  RR )  ->  ( r  x.  I
)  e.  RR )
2725, 19, 26syl2an 485 . . . . . . . . . 10  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( r  x.  I )  e.  RR )
2823, 27resubcld 10068 . . . . . . . . 9  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( P  -  ( r  x.  I ) )  e.  RR )
29 elfzoelz 11947 . . . . . . . . . . 11  |-  ( N  e.  ( 1..^ P )  ->  N  e.  ZZ )
30293ad2ant2 1052 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  N  e.  ZZ )
3130adantl 473 . . . . . . . . 9  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  N  e.  ZZ )
3213nnrpd 11362 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  P  e.  RR+ )
33323ad2ant1 1051 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  P  e.  RR+ )
3433adantl 473 . . . . . . . . 9  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  P  e.  RR+ )
35 modaddmulmod 12190 . . . . . . . . 9  |-  ( ( ( I  e.  RR  /\  ( P  -  (
r  x.  I ) )  e.  RR  /\  N  e.  ZZ )  /\  P  e.  RR+ )  ->  ( ( I  +  ( ( ( P  -  ( r  x.  I ) )  mod 
P )  x.  N
) )  mod  P
)  =  ( ( I  +  ( ( P  -  ( r  x.  I ) )  x.  N ) )  mod  P ) )
3620, 28, 31, 34, 35syl31anc 1295 . . . . . . . 8  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
I  +  ( ( ( P  -  (
r  x.  I ) )  mod  P )  x.  N ) )  mod  P )  =  ( ( I  +  ( ( P  -  ( r  x.  I
) )  x.  N
) )  mod  P
) )
3713nncnd 10647 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  P  e.  CC )
38373ad2ant1 1051 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  P  e.  CC )
3938adantl 473 . . . . . . . . . . 11  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  P  e.  CC )
406zcnd 11064 . . . . . . . . . . . . 13  |-  ( r  e.  ( 1 ... ( P  -  1 ) )  ->  r  e.  CC )
4140adantr 472 . . . . . . . . . . . 12  |-  ( ( r  e.  ( 1 ... ( P  - 
1 ) )  /\  ( ( N  x.  r )  mod  P
)  =  1 )  ->  r  e.  CC )
428zcnd 11064 . . . . . . . . . . . . 13  |-  ( I  e.  ( 1..^ P )  ->  I  e.  CC )
43423ad2ant3 1053 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  I  e.  CC )
44 mulcl 9641 . . . . . . . . . . . 12  |-  ( ( r  e.  CC  /\  I  e.  CC )  ->  ( r  x.  I
)  e.  CC )
4541, 43, 44syl2an 485 . . . . . . . . . . 11  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( r  x.  I )  e.  CC )
4629zcnd 11064 . . . . . . . . . . . . 13  |-  ( N  e.  ( 1..^ P )  ->  N  e.  CC )
47463ad2ant2 1052 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  N  e.  CC )
4847adantl 473 . . . . . . . . . . 11  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  N  e.  CC )
4939, 45, 48subdird 10096 . . . . . . . . . 10  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( ( P  -  ( r  x.  I ) )  x.  N )  =  ( ( P  x.  N
)  -  ( ( r  x.  I )  x.  N ) ) )
5049oveq2d 6324 . . . . . . . . 9  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( I  +  ( ( P  -  ( r  x.  I ) )  x.  N ) )  =  ( I  +  ( ( P  x.  N
)  -  ( ( r  x.  I )  x.  N ) ) ) )
5150oveq1d 6323 . . . . . . . 8  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
I  +  ( ( P  -  ( r  x.  I ) )  x.  N ) )  mod  P )  =  ( ( I  +  ( ( P  x.  N )  -  (
( r  x.  I
)  x.  N ) ) )  mod  P
) )
52 mulcom 9643 . . . . . . . . . . . . . . . . . . 19  |-  ( ( P  e.  CC  /\  N  e.  CC )  ->  ( P  x.  N
)  =  ( N  x.  P ) )
5337, 46, 52syl2an 485 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( P  x.  N )  =  ( N  x.  P ) )
5453oveq1d 6323 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( ( P  x.  N )  mod  P )  =  ( ( N  x.  P
)  mod  P )
)
55 mulmod0 12137 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ZZ  /\  P  e.  RR+ )  -> 
( ( N  x.  P )  mod  P
)  =  0 )
5629, 32, 55syl2anr 486 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( ( N  x.  P )  mod  P )  =  0 )
5754, 56eqtrd 2505 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( ( P  x.  N )  mod  P )  =  0 )
58573adant3 1050 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  ( ( P  x.  N )  mod 
P )  =  0 )
5958adantl 473 . . . . . . . . . . . . . 14  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( ( P  x.  N )  mod  P )  =  0 )
6041adantr 472 . . . . . . . . . . . . . . . . 17  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  r  e.  CC )
6143adantl 473 . . . . . . . . . . . . . . . . 17  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  I  e.  CC )
6260, 61, 48mul32d 9861 . . . . . . . . . . . . . . . 16  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
r  x.  I )  x.  N )  =  ( ( r  x.  N )  x.  I
) )
6362oveq1d 6323 . . . . . . . . . . . . . . 15  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
( r  x.  I
)  x.  N )  mod  P )  =  ( ( ( r  x.  N )  x.  I )  mod  P
) )
6429zred 11063 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  ( 1..^ P )  ->  N  e.  RR )
65643ad2ant2 1052 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  N  e.  RR )
66 remulcl 9642 . . . . . . . . . . . . . . . . 17  |-  ( ( r  e.  RR  /\  N  e.  RR )  ->  ( r  x.  N
)  e.  RR )
6725, 65, 66syl2an 485 . . . . . . . . . . . . . . . 16  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( r  x.  N )  e.  RR )
689adantl 473 . . . . . . . . . . . . . . . 16  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  I  e.  ZZ )
69 modmulmod 12189 . . . . . . . . . . . . . . . 16  |-  ( ( ( r  x.  N
)  e.  RR  /\  I  e.  ZZ  /\  P  e.  RR+ )  ->  (
( ( ( r  x.  N )  mod 
P )  x.  I
)  mod  P )  =  ( ( ( r  x.  N )  x.  I )  mod 
P ) )
7067, 68, 34, 69syl3anc 1292 . . . . . . . . . . . . . . 15  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
( ( r  x.  N )  mod  P
)  x.  I )  mod  P )  =  ( ( ( r  x.  N )  x.  I )  mod  P
) )
7163, 70eqtr4d 2508 . . . . . . . . . . . . . 14  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
( r  x.  I
)  x.  N )  mod  P )  =  ( ( ( ( r  x.  N )  mod  P )  x.  I )  mod  P
) )
7259, 71oveq12d 6326 . . . . . . . . . . . . 13  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
( P  x.  N
)  mod  P )  -  ( ( ( r  x.  I )  x.  N )  mod 
P ) )  =  ( 0  -  (
( ( ( r  x.  N )  mod 
P )  x.  I
)  mod  P )
) )
7372oveq1d 6323 . . . . . . . . . . . 12  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
( ( P  x.  N )  mod  P
)  -  ( ( ( r  x.  I
)  x.  N )  mod  P ) )  mod  P )  =  ( ( 0  -  ( ( ( ( r  x.  N )  mod  P )  x.  I )  mod  P
) )  mod  P
) )
74 remulcl 9642 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  RR  /\  N  e.  RR )  ->  ( P  x.  N
)  e.  RR )
7521, 64, 74syl2an 485 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( P  x.  N )  e.  RR )
76753adant3 1050 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  ( P  x.  N )  e.  RR )
7776adantl 473 . . . . . . . . . . . . 13  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( P  x.  N )  e.  RR )
7865adantl 473 . . . . . . . . . . . . . 14  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  N  e.  RR )
7927, 78remulcld 9689 . . . . . . . . . . . . 13  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
r  x.  I )  x.  N )  e.  RR )
80 modsubmodmod 12183 . . . . . . . . . . . . 13  |-  ( ( ( P  x.  N
)  e.  RR  /\  ( ( r  x.  I )  x.  N
)  e.  RR  /\  P  e.  RR+ )  -> 
( ( ( ( P  x.  N )  mod  P )  -  ( ( ( r  x.  I )  x.  N )  mod  P
) )  mod  P
)  =  ( ( ( P  x.  N
)  -  ( ( r  x.  I )  x.  N ) )  mod  P ) )
8177, 79, 34, 80syl3anc 1292 . . . . . . . . . . . 12  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
( ( P  x.  N )  mod  P
)  -  ( ( ( r  x.  I
)  x.  N )  mod  P ) )  mod  P )  =  ( ( ( P  x.  N )  -  ( ( r  x.  I )  x.  N
) )  mod  P
) )
82 mulcom 9643 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( N  e.  CC  /\  r  e.  CC )  ->  ( N  x.  r
)  =  ( r  x.  N ) )
8347, 40, 82syl2anr 486 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( r  e.  ( 1 ... ( P  - 
1 ) )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( N  x.  r )  =  ( r  x.  N ) )
8483oveq1d 6323 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( r  e.  ( 1 ... ( P  - 
1 ) )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  (
( N  x.  r
)  mod  P )  =  ( ( r  x.  N )  mod 
P ) )
8584eqeq1d 2473 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( r  e.  ( 1 ... ( P  - 
1 ) )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  (
( ( N  x.  r )  mod  P
)  =  1  <->  (
( r  x.  N
)  mod  P )  =  1 ) )
8685biimpd 212 . . . . . . . . . . . . . . . . . . 19  |-  ( ( r  e.  ( 1 ... ( P  - 
1 ) )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  (
( ( N  x.  r )  mod  P
)  =  1  -> 
( ( r  x.  N )  mod  P
)  =  1 ) )
8786impancom 447 . . . . . . . . . . . . . . . . . 18  |-  ( ( r  e.  ( 1 ... ( P  - 
1 ) )  /\  ( ( N  x.  r )  mod  P
)  =  1 )  ->  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  ( ( r  x.  N )  mod 
P )  =  1 ) )
8887imp 436 . . . . . . . . . . . . . . . . 17  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
r  x.  N )  mod  P )  =  1 )
8988oveq1d 6323 . . . . . . . . . . . . . . . 16  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
( r  x.  N
)  mod  P )  x.  I )  =  ( 1  x.  I ) )
9089oveq1d 6323 . . . . . . . . . . . . . . 15  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
( ( r  x.  N )  mod  P
)  x.  I )  mod  P )  =  ( ( 1  x.  I )  mod  P
) )
9190oveq2d 6324 . . . . . . . . . . . . . 14  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( 0  -  ( ( ( ( r  x.  N
)  mod  P )  x.  I )  mod  P
) )  =  ( 0  -  ( ( 1  x.  I )  mod  P ) ) )
9291oveq1d 6323 . . . . . . . . . . . . 13  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
0  -  ( ( ( ( r  x.  N )  mod  P
)  x.  I )  mod  P ) )  mod  P )  =  ( ( 0  -  ( ( 1  x.  I )  mod  P
) )  mod  P
) )
9361mulid2d 9679 . . . . . . . . . . . . . . . . 17  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( 1  x.  I )  =  I )
9493oveq1d 6323 . . . . . . . . . . . . . . . 16  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
1  x.  I )  mod  P )  =  ( I  mod  P
) )
9532, 18anim12ci 577 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( P  e.  Prime  /\  I  e.  ( 1..^ P ) )  ->  ( I  e.  RR  /\  P  e.  RR+ ) )
96 elfzo2 11950 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( I  e.  ( 1..^ P )  <->  ( I  e.  ( ZZ>= `  1 )  /\  P  e.  ZZ  /\  I  <  P ) )
97 eluz2 11188 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( I  e.  ( ZZ>= `  1
)  <->  ( 1  e.  ZZ  /\  I  e.  ZZ  /\  1  <_  I ) )
98 0red 9662 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( I  e.  ZZ  ->  0  e.  RR )
99 1red 9676 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( I  e.  ZZ  ->  1  e.  RR )
100 zre 10965 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( I  e.  ZZ  ->  I  e.  RR )
10198, 99, 1003jca 1210 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( I  e.  ZZ  ->  (
0  e.  RR  /\  1  e.  RR  /\  I  e.  RR ) )
102101adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( I  e.  ZZ  /\  1  <_  I )  -> 
( 0  e.  RR  /\  1  e.  RR  /\  I  e.  RR )
)
103 0le1 10158 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  0  <_  1
104103a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( I  e.  ZZ  ->  0  <_  1 )
105104anim1i 578 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( I  e.  ZZ  /\  1  <_  I )  -> 
( 0  <_  1  /\  1  <_  I ) )
106 letr 9745 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  I  e.  RR )  ->  (
( 0  <_  1  /\  1  <_  I )  ->  0  <_  I
) )
107102, 105, 106sylc 61 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( I  e.  ZZ  /\  1  <_  I )  -> 
0  <_  I )
1081073adant1 1048 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( 1  e.  ZZ  /\  I  e.  ZZ  /\  1  <_  I )  ->  0  <_  I )
10997, 108sylbi 200 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( I  e.  ( ZZ>= `  1
)  ->  0  <_  I )
1101093ad2ant1 1051 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( I  e.  ( ZZ>= ` 
1 )  /\  P  e.  ZZ  /\  I  < 
P )  ->  0  <_  I )
111 simp3 1032 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( I  e.  ( ZZ>= ` 
1 )  /\  P  e.  ZZ  /\  I  < 
P )  ->  I  <  P )
112110, 111jca 541 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( I  e.  ( ZZ>= ` 
1 )  /\  P  e.  ZZ  /\  I  < 
P )  ->  (
0  <_  I  /\  I  <  P ) )
11396, 112sylbi 200 . . . . . . . . . . . . . . . . . . . . 21  |-  ( I  e.  ( 1..^ P )  ->  ( 0  <_  I  /\  I  <  P ) )
114113adantl 473 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( P  e.  Prime  /\  I  e.  ( 1..^ P ) )  ->  ( 0  <_  I  /\  I  <  P ) )
11595, 114jca 541 . . . . . . . . . . . . . . . . . . 19  |-  ( ( P  e.  Prime  /\  I  e.  ( 1..^ P ) )  ->  ( (
I  e.  RR  /\  P  e.  RR+ )  /\  ( 0  <_  I  /\  I  <  P ) ) )
1161153adant2 1049 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  ( ( I  e.  RR  /\  P  e.  RR+ )  /\  (
0  <_  I  /\  I  <  P ) ) )
117116adantl 473 . . . . . . . . . . . . . . . . 17  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
I  e.  RR  /\  P  e.  RR+ )  /\  ( 0  <_  I  /\  I  <  P ) ) )
118 modid 12154 . . . . . . . . . . . . . . . . 17  |-  ( ( ( I  e.  RR  /\  P  e.  RR+ )  /\  ( 0  <_  I  /\  I  <  P ) )  ->  ( I  mod  P )  =  I )
119117, 118syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( I  mod  P )  =  I )
12094, 119eqtrd 2505 . . . . . . . . . . . . . . 15  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
1  x.  I )  mod  P )  =  I )
121120oveq2d 6324 . . . . . . . . . . . . . 14  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( 0  -  ( ( 1  x.  I )  mod 
P ) )  =  ( 0  -  I
) )
122121oveq1d 6323 . . . . . . . . . . . . 13  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
0  -  ( ( 1  x.  I )  mod  P ) )  mod  P )  =  ( ( 0  -  I )  mod  P
) )
12392, 122eqtrd 2505 . . . . . . . . . . . 12  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
0  -  ( ( ( ( r  x.  N )  mod  P
)  x.  I )  mod  P ) )  mod  P )  =  ( ( 0  -  I )  mod  P
) )
12473, 81, 1233eqtr3d 2513 . . . . . . . . . . 11  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
( P  x.  N
)  -  ( ( r  x.  I )  x.  N ) )  mod  P )  =  ( ( 0  -  I )  mod  P
) )
125124oveq2d 6324 . . . . . . . . . 10  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( I  +  ( ( ( P  x.  N )  -  ( ( r  x.  I )  x.  N ) )  mod 
P ) )  =  ( I  +  ( ( 0  -  I
)  mod  P )
) )
126125oveq1d 6323 . . . . . . . . 9  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
I  +  ( ( ( P  x.  N
)  -  ( ( r  x.  I )  x.  N ) )  mod  P ) )  mod  P )  =  ( ( I  +  ( ( 0  -  I )  mod  P
) )  mod  P
) )
12777, 79resubcld 10068 . . . . . . . . . 10  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( ( P  x.  N )  -  ( ( r  x.  I )  x.  N ) )  e.  RR )
128 modadd2mod 12174 . . . . . . . . . 10  |-  ( ( ( ( P  x.  N )  -  (
( r  x.  I
)  x.  N ) )  e.  RR  /\  I  e.  RR  /\  P  e.  RR+ )  ->  (
( I  +  ( ( ( P  x.  N )  -  (
( r  x.  I
)  x.  N ) )  mod  P ) )  mod  P )  =  ( ( I  +  ( ( P  x.  N )  -  ( ( r  x.  I )  x.  N
) ) )  mod 
P ) )
129127, 20, 34, 128syl3anc 1292 . . . . . . . . 9  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
I  +  ( ( ( P  x.  N
)  -  ( ( r  x.  I )  x.  N ) )  mod  P ) )  mod  P )  =  ( ( I  +  ( ( P  x.  N )  -  (
( r  x.  I
)  x.  N ) ) )  mod  P
) )
130 0red 9662 . . . . . . . . . . . . . . . 16  |-  ( I  e.  ( 1..^ P )  ->  0  e.  RR )
131130, 18resubcld 10068 . . . . . . . . . . . . . . 15  |-  ( I  e.  ( 1..^ P )  ->  ( 0  -  I )  e.  RR )
132131adantl 473 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  I  e.  ( 1..^ P ) )  ->  ( 0  -  I )  e.  RR )
13318adantl 473 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  I  e.  ( 1..^ P ) )  ->  I  e.  RR )
13432adantr 472 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  I  e.  ( 1..^ P ) )  ->  P  e.  RR+ )
135132, 133, 1343jca 1210 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  I  e.  ( 1..^ P ) )  ->  ( (
0  -  I )  e.  RR  /\  I  e.  RR  /\  P  e.  RR+ ) )
1361353adant2 1049 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  ( ( 0  -  I )  e.  RR  /\  I  e.  RR  /\  P  e.  RR+ ) )
137136adantl 473 . . . . . . . . . . 11  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
0  -  I )  e.  RR  /\  I  e.  RR  /\  P  e.  RR+ ) )
138 modadd2mod 12174 . . . . . . . . . . 11  |-  ( ( ( 0  -  I
)  e.  RR  /\  I  e.  RR  /\  P  e.  RR+ )  ->  (
( I  +  ( ( 0  -  I
)  mod  P )
)  mod  P )  =  ( ( I  +  ( 0  -  I ) )  mod 
P ) )
139137, 138syl 17 . . . . . . . . . 10  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
I  +  ( ( 0  -  I )  mod  P ) )  mod  P )  =  ( ( I  +  ( 0  -  I
) )  mod  P
) )
140 0cnd 9654 . . . . . . . . . . . . . 14  |-  ( I  e.  ( 1..^ P )  ->  0  e.  CC )
14142, 140pncan3d 10008 . . . . . . . . . . . . 13  |-  ( I  e.  ( 1..^ P )  ->  ( I  +  ( 0  -  I ) )  =  0 )
1421413ad2ant3 1053 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  ( I  +  ( 0  -  I
) )  =  0 )
143142adantl 473 . . . . . . . . . . 11  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( I  +  ( 0  -  I ) )  =  0 )
144143oveq1d 6323 . . . . . . . . . 10  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
I  +  ( 0  -  I ) )  mod  P )  =  ( 0  mod  P
) )
145 0mod 12161 . . . . . . . . . . . . 13  |-  ( P  e.  RR+  ->  ( 0  mod  P )  =  0 )
14632, 145syl 17 . . . . . . . . . . . 12  |-  ( P  e.  Prime  ->  ( 0  mod  P )  =  0 )
1471463ad2ant1 1051 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  ( 0  mod 
P )  =  0 )
148147adantl 473 . . . . . . . . . 10  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( 0  mod  P )  =  0 )
149139, 144, 1483eqtrd 2509 . . . . . . . . 9  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
I  +  ( ( 0  -  I )  mod  P ) )  mod  P )  =  0 )
150126, 129, 1493eqtr3d 2513 . . . . . . . 8  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
I  +  ( ( P  x.  N )  -  ( ( r  x.  I )  x.  N ) ) )  mod  P )  =  0 )
15136, 51, 1503eqtrd 2509 . . . . . . 7  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  ( (
I  +  ( ( ( P  -  (
r  x.  I ) )  mod  P )  x.  N ) )  mod  P )  =  0 )
152 oveq1 6315 . . . . . . . . . . 11  |-  ( j  =  ( ( P  -  ( r  x.  I ) )  mod 
P )  ->  (
j  x.  N )  =  ( ( ( P  -  ( r  x.  I ) )  mod  P )  x.  N ) )
153152oveq2d 6324 . . . . . . . . . 10  |-  ( j  =  ( ( P  -  ( r  x.  I ) )  mod 
P )  ->  (
I  +  ( j  x.  N ) )  =  ( I  +  ( ( ( P  -  ( r  x.  I ) )  mod 
P )  x.  N
) ) )
154153oveq1d 6323 . . . . . . . . 9  |-  ( j  =  ( ( P  -  ( r  x.  I ) )  mod 
P )  ->  (
( I  +  ( j  x.  N ) )  mod  P )  =  ( ( I  +  ( ( ( P  -  ( r  x.  I ) )  mod  P )  x.  N ) )  mod 
P ) )
155154eqeq1d 2473 . . . . . . . 8  |-  ( j  =  ( ( P  -  ( r  x.  I ) )  mod 
P )  ->  (
( ( I  +  ( j  x.  N
) )  mod  P
)  =  0  <->  (
( I  +  ( ( ( P  -  ( r  x.  I
) )  mod  P
)  x.  N ) )  mod  P )  =  0 ) )
156155rspcev 3136 . . . . . . 7  |-  ( ( ( ( P  -  ( r  x.  I
) )  mod  P
)  e.  ( 0..^ P )  /\  (
( I  +  ( ( ( P  -  ( r  x.  I
) )  mod  P
)  x.  N ) )  mod  P )  =  0 )  ->  E. j  e.  (
0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 )
15717, 151, 156syl2anc 673 . . . . . 6  |-  ( ( ( r  e.  ( 1 ... ( P  -  1 ) )  /\  ( ( N  x.  r )  mod 
P )  =  1 )  /\  ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N
) )  mod  P
)  =  0 )
158157ex 441 . . . . 5  |-  ( ( r  e.  ( 1 ... ( P  - 
1 ) )  /\  ( ( N  x.  r )  mod  P
)  =  1 )  ->  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 ) )
159158rexlimiva 2868 . . . 4  |-  ( E. r  e.  ( 1 ... ( P  - 
1 ) ) ( ( N  x.  r
)  mod  P )  =  1  ->  (
( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N
) )  mod  P
)  =  0 ) )
1601, 2, 1593syl 18 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 ) )
1611603adant3 1050 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 ) )
162161pm2.43i 48 1  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904   E.wrex 2757   E!wreu 2758   class class class wbr 4395   ` cfv 5589  (class class class)co 6308   CCcc 9555   RRcr 9556   0cc0 9557   1c1 9558    + caddc 9560    x. cmul 9562    < clt 9693    <_ cle 9694    - cmin 9880   NNcn 10631   ZZcz 10961   ZZ>=cuz 11182   RR+crp 11325   ...cfz 11810  ..^cfzo 11942    mod cmo 12129   Primecprime 14701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-map 7492  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-sup 7974  df-inf 7975  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-n0 10894  df-z 10962  df-uz 11183  df-rp 11326  df-fz 11811  df-fzo 11943  df-fl 12061  df-mod 12130  df-seq 12252  df-exp 12311  df-hash 12554  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-dvds 14383  df-gcd 14548  df-prm 14702  df-phi 14793
This theorem is referenced by:  nnnn0modprm0  14836
  Copyright terms: Public domain W3C validator