MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modom Structured version   Unicode version

Theorem modom 7625
Description: Two ways to express "at most one". (Contributed by Stefan O'Rear, 28-Oct-2014.)
Assertion
Ref Expression
modom  |-  ( E* x ph  <->  { x  |  ph }  ~<_  1o )

Proof of Theorem modom
StepHypRef Expression
1 df-mo 2267 . 2  |-  ( E* x ph  <->  ( E. x ph  ->  E! x ph ) )
2 imor 412 . 2  |-  ( ( E. x ph  ->  E! x ph )  <->  ( -.  E. x ph  \/  E! x ph ) )
3 abn0 3765 . . . . . 6  |-  ( { x  |  ph }  =/=  (/)  <->  E. x ph )
43necon1bbii 2716 . . . . 5  |-  ( -. 
E. x ph  <->  { x  |  ph }  =  (/) )
5 sdom1 7624 . . . . 5  |-  ( { x  |  ph }  ~<  1o  <->  { x  |  ph }  =  (/) )
64, 5bitr4i 252 . . . 4  |-  ( -. 
E. x ph  <->  { x  |  ph }  ~<  1o )
7 euen1 7490 . . . 4  |-  ( E! x ph  <->  { x  |  ph }  ~~  1o )
86, 7orbi12i 521 . . 3  |-  ( ( -.  E. x ph  \/  E! x ph )  <->  ( { x  |  ph }  ~<  1o  \/  {
x  |  ph }  ~~  1o ) )
9 brdom2 7450 . . 3  |-  ( { x  |  ph }  ~<_  1o 
<->  ( { x  | 
ph }  ~<  1o  \/  { x  |  ph }  ~~  1o ) )
108, 9bitr4i 252 . 2  |-  ( ( -.  E. x ph  \/  E! x ph )  <->  { x  |  ph }  ~<_  1o )
111, 2, 103bitri 271 1  |-  ( E* x ph  <->  { x  |  ph }  ~<_  1o )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    = wceq 1370   E.wex 1587   E!weu 2262   E*wmo 2263   {cab 2439   (/)c0 3746   class class class wbr 4401   1oc1o 7024    ~~ cen 7418    ~<_ cdom 7419    ~< csdm 7420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-tp 3991  df-op 3993  df-uni 4201  df-br 4402  df-opab 4460  df-tr 4495  df-eprel 4741  df-id 4745  df-po 4750  df-so 4751  df-fr 4788  df-we 4790  df-ord 4831  df-on 4832  df-lim 4833  df-suc 4834  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-om 6588  df-1o 7031  df-er 7212  df-en 7422  df-dom 7423  df-sdom 7424
This theorem is referenced by:  modom2  7626
  Copyright terms: Public domain W3C validator