MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modmulnn Structured version   Unicode version

Theorem modmulnn 11995
Description: Move a positive integer in and out of a floor in the first argument of a modulo operation. (Contributed by NM, 2-Jan-2009.)
Assertion
Ref Expression
modmulnn  |-  ( ( N  e.  NN  /\  A  e.  RR  /\  M  e.  NN )  ->  (
( N  x.  ( |_ `  A ) )  mod  ( N  x.  M ) )  <_ 
( ( |_ `  ( N  x.  A
) )  mod  ( N  x.  M )
) )

Proof of Theorem modmulnn
StepHypRef Expression
1 nnre 10538 . . . . 5  |-  ( N  e.  NN  ->  N  e.  RR )
2 reflcl 11914 . . . . 5  |-  ( A  e.  RR  ->  ( |_ `  A )  e.  RR )
3 remulcl 9566 . . . . 5  |-  ( ( N  e.  RR  /\  ( |_ `  A )  e.  RR )  -> 
( N  x.  ( |_ `  A ) )  e.  RR )
41, 2, 3syl2an 475 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  RR )  ->  ( N  x.  ( |_ `  A ) )  e.  RR )
543adant3 1014 . . 3  |-  ( ( N  e.  NN  /\  A  e.  RR  /\  M  e.  NN )  ->  ( N  x.  ( |_ `  A ) )  e.  RR )
6 remulcl 9566 . . . . . 6  |-  ( ( N  e.  RR  /\  A  e.  RR )  ->  ( N  x.  A
)  e.  RR )
71, 6sylan 469 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  RR )  ->  ( N  x.  A
)  e.  RR )
8 reflcl 11914 . . . . 5  |-  ( ( N  x.  A )  e.  RR  ->  ( |_ `  ( N  x.  A ) )  e.  RR )
97, 8syl 16 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  RR )  ->  ( |_ `  ( N  x.  A )
)  e.  RR )
1093adant3 1014 . . 3  |-  ( ( N  e.  NN  /\  A  e.  RR  /\  M  e.  NN )  ->  ( |_ `  ( N  x.  A ) )  e.  RR )
11 nnmulcl 10554 . . . . . 6  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( N  x.  M
)  e.  NN )
1211nnred 10546 . . . . 5  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( N  x.  M
)  e.  RR )
13123adant2 1013 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  RR  /\  M  e.  NN )  ->  ( N  x.  M )  e.  RR )
14 nncn 10539 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  CC )
15 nnne0 10564 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  =/=  0 )
1614, 15jca 530 . . . . . . . 8  |-  ( N  e.  NN  ->  ( N  e.  CC  /\  N  =/=  0 ) )
17 nncn 10539 . . . . . . . . 9  |-  ( M  e.  NN  ->  M  e.  CC )
18 nnne0 10564 . . . . . . . . 9  |-  ( M  e.  NN  ->  M  =/=  0 )
1917, 18jca 530 . . . . . . . 8  |-  ( M  e.  NN  ->  ( M  e.  CC  /\  M  =/=  0 ) )
20 mulne0 10187 . . . . . . . 8  |-  ( ( ( N  e.  CC  /\  N  =/=  0 )  /\  ( M  e.  CC  /\  M  =/=  0 ) )  -> 
( N  x.  M
)  =/=  0 )
2116, 19, 20syl2an 475 . . . . . . 7  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( N  x.  M
)  =/=  0 )
22213adant2 1013 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  RR  /\  M  e.  NN )  ->  ( N  x.  M )  =/=  0 )
235, 13, 22redivcld 10368 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  RR  /\  M  e.  NN )  ->  (
( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) )  e.  RR )
24 reflcl 11914 . . . . 5  |-  ( ( ( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) )  e.  RR  ->  ( |_ `  ( ( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) ) )  e.  RR )
2523, 24syl 16 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  RR  /\  M  e.  NN )  ->  ( |_ `  ( ( N  x.  ( |_ `  A ) )  / 
( N  x.  M
) ) )  e.  RR )
2613, 25remulcld 9613 . . 3  |-  ( ( N  e.  NN  /\  A  e.  RR  /\  M  e.  NN )  ->  (
( N  x.  M
)  x.  ( |_
`  ( ( N  x.  ( |_ `  A ) )  / 
( N  x.  M
) ) ) )  e.  RR )
27 nnnn0 10798 . . . . 5  |-  ( N  e.  NN  ->  N  e.  NN0 )
28 flmulnn0 11942 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  RR )  ->  ( N  x.  ( |_ `  A ) )  <_  ( |_ `  ( N  x.  A
) ) )
2927, 28sylan 469 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  RR )  ->  ( N  x.  ( |_ `  A ) )  <_  ( |_ `  ( N  x.  A
) ) )
30293adant3 1014 . . 3  |-  ( ( N  e.  NN  /\  A  e.  RR  /\  M  e.  NN )  ->  ( N  x.  ( |_ `  A ) )  <_ 
( |_ `  ( N  x.  A )
) )
315, 10, 26, 30lesub1dd 10164 . 2  |-  ( ( N  e.  NN  /\  A  e.  RR  /\  M  e.  NN )  ->  (
( N  x.  ( |_ `  A ) )  -  ( ( N  x.  M )  x.  ( |_ `  (
( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) ) ) ) )  <_  (
( |_ `  ( N  x.  A )
)  -  ( ( N  x.  M )  x.  ( |_ `  ( ( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) ) ) ) ) )
3211nnrpd 11257 . . . 4  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( N  x.  M
)  e.  RR+ )
33323adant2 1013 . . 3  |-  ( ( N  e.  NN  /\  A  e.  RR  /\  M  e.  NN )  ->  ( N  x.  M )  e.  RR+ )
34 modval 11980 . . 3  |-  ( ( ( N  x.  ( |_ `  A ) )  e.  RR  /\  ( N  x.  M )  e.  RR+ )  ->  (
( N  x.  ( |_ `  A ) )  mod  ( N  x.  M ) )  =  ( ( N  x.  ( |_ `  A ) )  -  ( ( N  x.  M )  x.  ( |_ `  ( ( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) ) ) ) ) )
355, 33, 34syl2anc 659 . 2  |-  ( ( N  e.  NN  /\  A  e.  RR  /\  M  e.  NN )  ->  (
( N  x.  ( |_ `  A ) )  mod  ( N  x.  M ) )  =  ( ( N  x.  ( |_ `  A ) )  -  ( ( N  x.  M )  x.  ( |_ `  ( ( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) ) ) ) ) )
36 modval 11980 . . . 4  |-  ( ( ( |_ `  ( N  x.  A )
)  e.  RR  /\  ( N  x.  M
)  e.  RR+ )  ->  ( ( |_ `  ( N  x.  A
) )  mod  ( N  x.  M )
)  =  ( ( |_ `  ( N  x.  A ) )  -  ( ( N  x.  M )  x.  ( |_ `  (
( |_ `  ( N  x.  A )
)  /  ( N  x.  M ) ) ) ) ) )
3710, 33, 36syl2anc 659 . . 3  |-  ( ( N  e.  NN  /\  A  e.  RR  /\  M  e.  NN )  ->  (
( |_ `  ( N  x.  A )
)  mod  ( N  x.  M ) )  =  ( ( |_ `  ( N  x.  A
) )  -  (
( N  x.  M
)  x.  ( |_
`  ( ( |_
`  ( N  x.  A ) )  / 
( N  x.  M
) ) ) ) ) )
3873adant3 1014 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  RR  /\  M  e.  NN )  ->  ( N  x.  A )  e.  RR )
39113adant2 1013 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  RR  /\  M  e.  NN )  ->  ( N  x.  M )  e.  NN )
40 fldiv 11969 . . . . . . 7  |-  ( ( ( N  x.  A
)  e.  RR  /\  ( N  x.  M
)  e.  NN )  ->  ( |_ `  ( ( |_ `  ( N  x.  A
) )  /  ( N  x.  M )
) )  =  ( |_ `  ( ( N  x.  A )  /  ( N  x.  M ) ) ) )
4138, 39, 40syl2anc 659 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  RR  /\  M  e.  NN )  ->  ( |_ `  ( ( |_
`  ( N  x.  A ) )  / 
( N  x.  M
) ) )  =  ( |_ `  (
( N  x.  A
)  /  ( N  x.  M ) ) ) )
42 fldiv 11969 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  M  e.  NN )  ->  ( |_ `  (
( |_ `  A
)  /  M ) )  =  ( |_
`  ( A  /  M ) ) )
43423adant3 1014 . . . . . . . 8  |-  ( ( A  e.  RR  /\  M  e.  NN  /\  N  e.  NN )  ->  ( |_ `  ( ( |_
`  A )  /  M ) )  =  ( |_ `  ( A  /  M ) ) )
442recnd 9611 . . . . . . . . . 10  |-  ( A  e.  RR  ->  ( |_ `  A )  e.  CC )
45 divcan5 10242 . . . . . . . . . 10  |-  ( ( ( |_ `  A
)  e.  CC  /\  ( M  e.  CC  /\  M  =/=  0 )  /\  ( N  e.  CC  /\  N  =/=  0 ) )  -> 
( ( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) )  =  ( ( |_
`  A )  /  M ) )
4644, 19, 16, 45syl3an 1268 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) )  =  ( ( |_ `  A )  /  M
) )
4746fveq2d 5852 . . . . . . . 8  |-  ( ( A  e.  RR  /\  M  e.  NN  /\  N  e.  NN )  ->  ( |_ `  ( ( N  x.  ( |_ `  A ) )  / 
( N  x.  M
) ) )  =  ( |_ `  (
( |_ `  A
)  /  M ) ) )
48 recn 9571 . . . . . . . . . 10  |-  ( A  e.  RR  ->  A  e.  CC )
49 divcan5 10242 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( M  e.  CC  /\  M  =/=  0 )  /\  ( N  e.  CC  /\  N  =/=  0 ) )  -> 
( ( N  x.  A )  /  ( N  x.  M )
)  =  ( A  /  M ) )
5048, 19, 16, 49syl3an 1268 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( N  x.  A
)  /  ( N  x.  M ) )  =  ( A  /  M ) )
5150fveq2d 5852 . . . . . . . 8  |-  ( ( A  e.  RR  /\  M  e.  NN  /\  N  e.  NN )  ->  ( |_ `  ( ( N  x.  A )  / 
( N  x.  M
) ) )  =  ( |_ `  ( A  /  M ) ) )
5243, 47, 513eqtr4rd 2506 . . . . . . 7  |-  ( ( A  e.  RR  /\  M  e.  NN  /\  N  e.  NN )  ->  ( |_ `  ( ( N  x.  A )  / 
( N  x.  M
) ) )  =  ( |_ `  (
( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) ) ) )
53523comr 1202 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  RR  /\  M  e.  NN )  ->  ( |_ `  ( ( N  x.  A )  / 
( N  x.  M
) ) )  =  ( |_ `  (
( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) ) ) )
5441, 53eqtrd 2495 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  RR  /\  M  e.  NN )  ->  ( |_ `  ( ( |_
`  ( N  x.  A ) )  / 
( N  x.  M
) ) )  =  ( |_ `  (
( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) ) ) )
5554oveq2d 6286 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  RR  /\  M  e.  NN )  ->  (
( N  x.  M
)  x.  ( |_
`  ( ( |_
`  ( N  x.  A ) )  / 
( N  x.  M
) ) ) )  =  ( ( N  x.  M )  x.  ( |_ `  (
( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) ) ) ) )
5655oveq2d 6286 . . 3  |-  ( ( N  e.  NN  /\  A  e.  RR  /\  M  e.  NN )  ->  (
( |_ `  ( N  x.  A )
)  -  ( ( N  x.  M )  x.  ( |_ `  ( ( |_ `  ( N  x.  A
) )  /  ( N  x.  M )
) ) ) )  =  ( ( |_
`  ( N  x.  A ) )  -  ( ( N  x.  M )  x.  ( |_ `  ( ( N  x.  ( |_ `  A ) )  / 
( N  x.  M
) ) ) ) ) )
5737, 56eqtrd 2495 . 2  |-  ( ( N  e.  NN  /\  A  e.  RR  /\  M  e.  NN )  ->  (
( |_ `  ( N  x.  A )
)  mod  ( N  x.  M ) )  =  ( ( |_ `  ( N  x.  A
) )  -  (
( N  x.  M
)  x.  ( |_
`  ( ( N  x.  ( |_ `  A ) )  / 
( N  x.  M
) ) ) ) ) )
5831, 35, 573brtr4d 4469 1  |-  ( ( N  e.  NN  /\  A  e.  RR  /\  M  e.  NN )  ->  (
( N  x.  ( |_ `  A ) )  mod  ( N  x.  M ) )  <_ 
( ( |_ `  ( N  x.  A
) )  mod  ( N  x.  M )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823    =/= wne 2649   class class class wbr 4439   ` cfv 5570  (class class class)co 6270   CCcc 9479   RRcr 9480   0cc0 9481    x. cmul 9486    <_ cle 9618    - cmin 9796    / cdiv 10202   NNcn 10531   NN0cn0 10791   RR+crp 11221   |_cfl 11908    mod cmo 11978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-sup 7893  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-n0 10792  df-z 10861  df-uz 11083  df-rp 11222  df-fl 11910  df-mod 11979
This theorem is referenced by:  digit1  12282
  Copyright terms: Public domain W3C validator