MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modmul1 Structured version   Unicode version

Theorem modmul1 12004
Description: Multiplication property of the modulo operation. Note that the multiplier  C must be an integer. (Contributed by NM, 12-Nov-2008.)
Assertion
Ref Expression
modmul1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ZZ  /\  D  e.  RR+ )  /\  ( A  mod  D )  =  ( B  mod  D
) )  ->  (
( A  x.  C
)  mod  D )  =  ( ( B  x.  C )  mod 
D ) )

Proof of Theorem modmul1
StepHypRef Expression
1 modval 11962 . . . . . . . 8  |-  ( ( A  e.  RR  /\  D  e.  RR+ )  -> 
( A  mod  D
)  =  ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) ) )
2 modval 11962 . . . . . . . 8  |-  ( ( B  e.  RR  /\  D  e.  RR+ )  -> 
( B  mod  D
)  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) ) )
31, 2eqeqan12d 2490 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  D  e.  RR+ )  /\  ( B  e.  RR  /\  D  e.  RR+ )
)  ->  ( ( A  mod  D )  =  ( B  mod  D
)  <->  ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) ) ) )
43anandirs 829 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  D  e.  RR+ )  ->  ( ( A  mod  D )  =  ( B  mod  D
)  <->  ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) ) ) )
54adantrl 715 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ZZ  /\  D  e.  RR+ ) )  ->  (
( A  mod  D
)  =  ( B  mod  D )  <->  ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) ) ) )
6 oveq1 6289 . . . . 5  |-  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  ->  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  x.  C
)  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) )  x.  C ) )
75, 6syl6bi 228 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ZZ  /\  D  e.  RR+ ) )  ->  (
( A  mod  D
)  =  ( B  mod  D )  -> 
( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  x.  C )  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  x.  C
) ) )
8 rpcn 11224 . . . . . . . . . . 11  |-  ( D  e.  RR+  ->  D  e.  CC )
98ad2antll 728 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  D  e.  CC )
10 zcn 10865 . . . . . . . . . . 11  |-  ( C  e.  ZZ  ->  C  e.  CC )
1110ad2antrl 727 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  C  e.  CC )
12 rerpdivcl 11243 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  D  e.  RR+ )  -> 
( A  /  D
)  e.  RR )
1312flcld 11899 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  D  e.  RR+ )  -> 
( |_ `  ( A  /  D ) )  e.  ZZ )
1413zcnd 10963 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  D  e.  RR+ )  -> 
( |_ `  ( A  /  D ) )  e.  CC )
1514adantrl 715 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( |_ `  ( A  /  D
) )  e.  CC )
169, 11, 15mulassd 9615 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( ( D  x.  C )  x.  ( |_ `  ( A  /  D ) ) )  =  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )
179, 11, 15mul32d 9785 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( ( D  x.  C )  x.  ( |_ `  ( A  /  D ) ) )  =  ( ( D  x.  ( |_
`  ( A  /  D ) ) )  x.  C ) )
1816, 17eqtr3d 2510 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) )  =  ( ( D  x.  ( |_
`  ( A  /  D ) ) )  x.  C ) )
1918oveq2d 6298 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )  =  ( ( A  x.  C
)  -  ( ( D  x.  ( |_
`  ( A  /  D ) ) )  x.  C ) ) )
20 recn 9578 . . . . . . . . 9  |-  ( A  e.  RR  ->  A  e.  CC )
2120adantr 465 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  A  e.  CC )
228adantl 466 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  D  e.  RR+ )  ->  D  e.  CC )
2322, 14mulcld 9612 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  D  e.  RR+ )  -> 
( D  x.  ( |_ `  ( A  /  D ) ) )  e.  CC )
2423adantrl 715 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( D  x.  ( |_ `  ( A  /  D ) ) )  e.  CC )
2521, 24, 11subdird 10009 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  x.  C
)  =  ( ( A  x.  C )  -  ( ( D  x.  ( |_ `  ( A  /  D
) ) )  x.  C ) ) )
2619, 25eqtr4d 2511 . . . . . 6  |-  ( ( A  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )  =  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  x.  C ) )
2726adantlr 714 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ZZ  /\  D  e.  RR+ ) )  ->  (
( A  x.  C
)  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )  =  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  x.  C ) )
288ad2antll 728 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  D  e.  CC )
2910ad2antrl 727 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  C  e.  CC )
30 rerpdivcl 11243 . . . . . . . . . . . . 13  |-  ( ( B  e.  RR  /\  D  e.  RR+ )  -> 
( B  /  D
)  e.  RR )
3130flcld 11899 . . . . . . . . . . . 12  |-  ( ( B  e.  RR  /\  D  e.  RR+ )  -> 
( |_ `  ( B  /  D ) )  e.  ZZ )
3231zcnd 10963 . . . . . . . . . . 11  |-  ( ( B  e.  RR  /\  D  e.  RR+ )  -> 
( |_ `  ( B  /  D ) )  e.  CC )
3332adantrl 715 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( |_ `  ( B  /  D
) )  e.  CC )
3428, 29, 33mulassd 9615 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( ( D  x.  C )  x.  ( |_ `  ( B  /  D ) ) )  =  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )
3528, 29, 33mul32d 9785 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( ( D  x.  C )  x.  ( |_ `  ( B  /  D ) ) )  =  ( ( D  x.  ( |_
`  ( B  /  D ) ) )  x.  C ) )
3634, 35eqtr3d 2510 . . . . . . . 8  |-  ( ( B  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) )  =  ( ( D  x.  ( |_
`  ( B  /  D ) ) )  x.  C ) )
3736oveq2d 6298 . . . . . . 7  |-  ( ( B  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  =  ( ( B  x.  C
)  -  ( ( D  x.  ( |_
`  ( B  /  D ) ) )  x.  C ) ) )
38 recn 9578 . . . . . . . . 9  |-  ( B  e.  RR  ->  B  e.  CC )
3938adantr 465 . . . . . . . 8  |-  ( ( B  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  B  e.  CC )
408adantl 466 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  D  e.  RR+ )  ->  D  e.  CC )
4140, 32mulcld 9612 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  D  e.  RR+ )  -> 
( D  x.  ( |_ `  ( B  /  D ) ) )  e.  CC )
4241adantrl 715 . . . . . . . 8  |-  ( ( B  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( D  x.  ( |_ `  ( B  /  D ) ) )  e.  CC )
4339, 42, 29subdird 10009 . . . . . . 7  |-  ( ( B  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  x.  C
)  =  ( ( B  x.  C )  -  ( ( D  x.  ( |_ `  ( B  /  D
) ) )  x.  C ) ) )
4437, 43eqtr4d 2511 . . . . . 6  |-  ( ( B  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) )  x.  C ) )
4544adantll 713 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ZZ  /\  D  e.  RR+ ) )  ->  (
( B  x.  C
)  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  x.  C ) )
4627, 45eqeq12d 2489 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ZZ  /\  D  e.  RR+ ) )  ->  (
( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )  =  ( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  <->  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  x.  C
)  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) )  x.  C ) ) )
477, 46sylibrd 234 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ZZ  /\  D  e.  RR+ ) )  ->  (
( A  mod  D
)  =  ( B  mod  D )  -> 
( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )  =  ( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) ) ) )
48 oveq1 6289 . . . 4  |-  ( ( ( A  x.  C
)  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )  =  ( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  -> 
( ( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D
) ) ) ) )  mod  D )  =  ( ( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  mod  D
) )
49 zre 10864 . . . . . . . . 9  |-  ( C  e.  ZZ  ->  C  e.  RR )
50 remulcl 9573 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  x.  C
)  e.  RR )
5149, 50sylan2 474 . . . . . . . 8  |-  ( ( A  e.  RR  /\  C  e.  ZZ )  ->  ( A  x.  C
)  e.  RR )
5251adantrr 716 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( A  x.  C )  e.  RR )
53 simprr 756 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  D  e.  RR+ )
54 simprl 755 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  C  e.  ZZ )
5513adantrl 715 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( |_ `  ( A  /  D
) )  e.  ZZ )
5654, 55zmulcld 10968 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( C  x.  ( |_ `  ( A  /  D ) ) )  e.  ZZ )
57 modcyc2 11996 . . . . . . 7  |-  ( ( ( A  x.  C
)  e.  RR  /\  D  e.  RR+  /\  ( C  x.  ( |_ `  ( A  /  D
) ) )  e.  ZZ )  ->  (
( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )  mod 
D )  =  ( ( A  x.  C
)  mod  D )
)
5852, 53, 56, 57syl3anc 1228 . . . . . 6  |-  ( ( A  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( (
( A  x.  C
)  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )  mod 
D )  =  ( ( A  x.  C
)  mod  D )
)
5958adantlr 714 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ZZ  /\  D  e.  RR+ ) )  ->  (
( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )  mod 
D )  =  ( ( A  x.  C
)  mod  D )
)
60 remulcl 9573 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  x.  C
)  e.  RR )
6149, 60sylan2 474 . . . . . . . 8  |-  ( ( B  e.  RR  /\  C  e.  ZZ )  ->  ( B  x.  C
)  e.  RR )
6261adantrr 716 . . . . . . 7  |-  ( ( B  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( B  x.  C )  e.  RR )
63 simprr 756 . . . . . . 7  |-  ( ( B  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  D  e.  RR+ )
64 simprl 755 . . . . . . . 8  |-  ( ( B  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  C  e.  ZZ )
6531adantrl 715 . . . . . . . 8  |-  ( ( B  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( |_ `  ( B  /  D
) )  e.  ZZ )
6664, 65zmulcld 10968 . . . . . . 7  |-  ( ( B  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( C  x.  ( |_ `  ( B  /  D ) ) )  e.  ZZ )
67 modcyc2 11996 . . . . . . 7  |-  ( ( ( B  x.  C
)  e.  RR  /\  D  e.  RR+  /\  ( C  x.  ( |_ `  ( B  /  D
) ) )  e.  ZZ )  ->  (
( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  mod 
D )  =  ( ( B  x.  C
)  mod  D )
)
6862, 63, 66, 67syl3anc 1228 . . . . . 6  |-  ( ( B  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( (
( B  x.  C
)  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  mod 
D )  =  ( ( B  x.  C
)  mod  D )
)
6968adantll 713 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ZZ  /\  D  e.  RR+ ) )  ->  (
( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  mod 
D )  =  ( ( B  x.  C
)  mod  D )
)
7059, 69eqeq12d 2489 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ZZ  /\  D  e.  RR+ ) )  ->  (
( ( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D
) ) ) ) )  mod  D )  =  ( ( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  mod  D
)  <->  ( ( A  x.  C )  mod 
D )  =  ( ( B  x.  C
)  mod  D )
) )
7148, 70syl5ib 219 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ZZ  /\  D  e.  RR+ ) )  ->  (
( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )  =  ( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  -> 
( ( A  x.  C )  mod  D
)  =  ( ( B  x.  C )  mod  D ) ) )
7247, 71syld 44 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ZZ  /\  D  e.  RR+ ) )  ->  (
( A  mod  D
)  =  ( B  mod  D )  -> 
( ( A  x.  C )  mod  D
)  =  ( ( B  x.  C )  mod  D ) ) )
73723impia 1193 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ZZ  /\  D  e.  RR+ )  /\  ( A  mod  D )  =  ( B  mod  D
) )  ->  (
( A  x.  C
)  mod  D )  =  ( ( B  x.  C )  mod 
D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   ` cfv 5586  (class class class)co 6282   CCcc 9486   RRcr 9487    x. cmul 9493    - cmin 9801    / cdiv 10202   ZZcz 10860   RR+crp 11216   |_cfl 11891    mod cmo 11960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-recs 7039  df-rdg 7073  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-sup 7897  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-n0 10792  df-z 10861  df-uz 11079  df-rp 11217  df-fl 11893  df-mod 11961
This theorem is referenced by:  modmul12d  12005  modnegd  12006  modmulmod  12016  eulerthlem2  14167  fermltl  14169  odzdvds  14177  wilthlem2  23071  lgsdir2lem4  23329  lgsdirprm  23332  pellexlem6  30374
  Copyright terms: Public domain W3C validator