MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modmul1 Unicode version

Theorem modmul1 11234
Description: Multiplication property of the modulo operation. Note that the multiplier  C must be an integer. (Contributed by NM, 12-Nov-2008.)
Assertion
Ref Expression
modmul1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ZZ  /\  D  e.  RR+ )  /\  ( A  mod  D )  =  ( B  mod  D
) )  ->  (
( A  x.  C
)  mod  D )  =  ( ( B  x.  C )  mod 
D ) )

Proof of Theorem modmul1
StepHypRef Expression
1 modval 11207 . . . . . . . 8  |-  ( ( A  e.  RR  /\  D  e.  RR+ )  -> 
( A  mod  D
)  =  ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) ) )
2 modval 11207 . . . . . . . 8  |-  ( ( B  e.  RR  /\  D  e.  RR+ )  -> 
( B  mod  D
)  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) ) )
31, 2eqeqan12d 2419 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  D  e.  RR+ )  /\  ( B  e.  RR  /\  D  e.  RR+ )
)  ->  ( ( A  mod  D )  =  ( B  mod  D
)  <->  ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) ) ) )
43anandirs 805 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  D  e.  RR+ )  ->  ( ( A  mod  D )  =  ( B  mod  D
)  <->  ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) ) ) )
54adantrl 697 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ZZ  /\  D  e.  RR+ ) )  ->  (
( A  mod  D
)  =  ( B  mod  D )  <->  ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) ) ) )
6 oveq1 6047 . . . . 5  |-  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  ->  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  x.  C
)  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) )  x.  C ) )
75, 6syl6bi 220 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ZZ  /\  D  e.  RR+ ) )  ->  (
( A  mod  D
)  =  ( B  mod  D )  -> 
( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  x.  C )  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  x.  C
) ) )
8 rpcn 10576 . . . . . . . . . . 11  |-  ( D  e.  RR+  ->  D  e.  CC )
98ad2antll 710 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  D  e.  CC )
10 zcn 10243 . . . . . . . . . . 11  |-  ( C  e.  ZZ  ->  C  e.  CC )
1110ad2antrl 709 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  C  e.  CC )
12 rerpdivcl 10595 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  D  e.  RR+ )  -> 
( A  /  D
)  e.  RR )
1312flcld 11162 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  D  e.  RR+ )  -> 
( |_ `  ( A  /  D ) )  e.  ZZ )
1413zcnd 10332 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  D  e.  RR+ )  -> 
( |_ `  ( A  /  D ) )  e.  CC )
1514adantrl 697 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( |_ `  ( A  /  D
) )  e.  CC )
169, 11, 15mulassd 9067 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( ( D  x.  C )  x.  ( |_ `  ( A  /  D ) ) )  =  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )
179, 11, 15mul32d 9232 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( ( D  x.  C )  x.  ( |_ `  ( A  /  D ) ) )  =  ( ( D  x.  ( |_
`  ( A  /  D ) ) )  x.  C ) )
1816, 17eqtr3d 2438 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) )  =  ( ( D  x.  ( |_
`  ( A  /  D ) ) )  x.  C ) )
1918oveq2d 6056 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )  =  ( ( A  x.  C
)  -  ( ( D  x.  ( |_
`  ( A  /  D ) ) )  x.  C ) ) )
20 recn 9036 . . . . . . . . 9  |-  ( A  e.  RR  ->  A  e.  CC )
2120adantr 452 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  A  e.  CC )
228adantl 453 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  D  e.  RR+ )  ->  D  e.  CC )
2322, 14mulcld 9064 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  D  e.  RR+ )  -> 
( D  x.  ( |_ `  ( A  /  D ) ) )  e.  CC )
2423adantrl 697 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( D  x.  ( |_ `  ( A  /  D ) ) )  e.  CC )
2521, 24, 11subdird 9446 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  x.  C
)  =  ( ( A  x.  C )  -  ( ( D  x.  ( |_ `  ( A  /  D
) ) )  x.  C ) ) )
2619, 25eqtr4d 2439 . . . . . 6  |-  ( ( A  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )  =  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  x.  C ) )
2726adantlr 696 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ZZ  /\  D  e.  RR+ ) )  ->  (
( A  x.  C
)  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )  =  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  x.  C ) )
288ad2antll 710 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  D  e.  CC )
2910ad2antrl 709 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  C  e.  CC )
30 rerpdivcl 10595 . . . . . . . . . . . . 13  |-  ( ( B  e.  RR  /\  D  e.  RR+ )  -> 
( B  /  D
)  e.  RR )
3130flcld 11162 . . . . . . . . . . . 12  |-  ( ( B  e.  RR  /\  D  e.  RR+ )  -> 
( |_ `  ( B  /  D ) )  e.  ZZ )
3231zcnd 10332 . . . . . . . . . . 11  |-  ( ( B  e.  RR  /\  D  e.  RR+ )  -> 
( |_ `  ( B  /  D ) )  e.  CC )
3332adantrl 697 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( |_ `  ( B  /  D
) )  e.  CC )
3428, 29, 33mulassd 9067 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( ( D  x.  C )  x.  ( |_ `  ( B  /  D ) ) )  =  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )
3528, 29, 33mul32d 9232 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( ( D  x.  C )  x.  ( |_ `  ( B  /  D ) ) )  =  ( ( D  x.  ( |_
`  ( B  /  D ) ) )  x.  C ) )
3634, 35eqtr3d 2438 . . . . . . . 8  |-  ( ( B  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) )  =  ( ( D  x.  ( |_
`  ( B  /  D ) ) )  x.  C ) )
3736oveq2d 6056 . . . . . . 7  |-  ( ( B  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  =  ( ( B  x.  C
)  -  ( ( D  x.  ( |_
`  ( B  /  D ) ) )  x.  C ) ) )
38 recn 9036 . . . . . . . . 9  |-  ( B  e.  RR  ->  B  e.  CC )
3938adantr 452 . . . . . . . 8  |-  ( ( B  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  B  e.  CC )
408adantl 453 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  D  e.  RR+ )  ->  D  e.  CC )
4140, 32mulcld 9064 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  D  e.  RR+ )  -> 
( D  x.  ( |_ `  ( B  /  D ) ) )  e.  CC )
4241adantrl 697 . . . . . . . 8  |-  ( ( B  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( D  x.  ( |_ `  ( B  /  D ) ) )  e.  CC )
4339, 42, 29subdird 9446 . . . . . . 7  |-  ( ( B  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  x.  C
)  =  ( ( B  x.  C )  -  ( ( D  x.  ( |_ `  ( B  /  D
) ) )  x.  C ) ) )
4437, 43eqtr4d 2439 . . . . . 6  |-  ( ( B  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) )  x.  C ) )
4544adantll 695 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ZZ  /\  D  e.  RR+ ) )  ->  (
( B  x.  C
)  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  x.  C ) )
4627, 45eqeq12d 2418 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ZZ  /\  D  e.  RR+ ) )  ->  (
( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )  =  ( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  <->  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  x.  C
)  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) )  x.  C ) ) )
477, 46sylibrd 226 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ZZ  /\  D  e.  RR+ ) )  ->  (
( A  mod  D
)  =  ( B  mod  D )  -> 
( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )  =  ( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) ) ) )
48 oveq1 6047 . . . 4  |-  ( ( ( A  x.  C
)  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )  =  ( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  -> 
( ( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D
) ) ) ) )  mod  D )  =  ( ( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  mod  D
) )
49 zre 10242 . . . . . . . . 9  |-  ( C  e.  ZZ  ->  C  e.  RR )
50 remulcl 9031 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  x.  C
)  e.  RR )
5149, 50sylan2 461 . . . . . . . 8  |-  ( ( A  e.  RR  /\  C  e.  ZZ )  ->  ( A  x.  C
)  e.  RR )
5251adantrr 698 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( A  x.  C )  e.  RR )
53 simprr 734 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  D  e.  RR+ )
54 simprl 733 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  C  e.  ZZ )
5513adantrl 697 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( |_ `  ( A  /  D
) )  e.  ZZ )
5654, 55zmulcld 10337 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( C  x.  ( |_ `  ( A  /  D ) ) )  e.  ZZ )
57 modcyc2 11232 . . . . . . 7  |-  ( ( ( A  x.  C
)  e.  RR  /\  D  e.  RR+  /\  ( C  x.  ( |_ `  ( A  /  D
) ) )  e.  ZZ )  ->  (
( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )  mod 
D )  =  ( ( A  x.  C
)  mod  D )
)
5852, 53, 56, 57syl3anc 1184 . . . . . 6  |-  ( ( A  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( (
( A  x.  C
)  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )  mod 
D )  =  ( ( A  x.  C
)  mod  D )
)
5958adantlr 696 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ZZ  /\  D  e.  RR+ ) )  ->  (
( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )  mod 
D )  =  ( ( A  x.  C
)  mod  D )
)
60 remulcl 9031 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  x.  C
)  e.  RR )
6149, 60sylan2 461 . . . . . . . 8  |-  ( ( B  e.  RR  /\  C  e.  ZZ )  ->  ( B  x.  C
)  e.  RR )
6261adantrr 698 . . . . . . 7  |-  ( ( B  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( B  x.  C )  e.  RR )
63 simprr 734 . . . . . . 7  |-  ( ( B  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  D  e.  RR+ )
64 simprl 733 . . . . . . . 8  |-  ( ( B  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  C  e.  ZZ )
6531adantrl 697 . . . . . . . 8  |-  ( ( B  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( |_ `  ( B  /  D
) )  e.  ZZ )
6664, 65zmulcld 10337 . . . . . . 7  |-  ( ( B  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( C  x.  ( |_ `  ( B  /  D ) ) )  e.  ZZ )
67 modcyc2 11232 . . . . . . 7  |-  ( ( ( B  x.  C
)  e.  RR  /\  D  e.  RR+  /\  ( C  x.  ( |_ `  ( B  /  D
) ) )  e.  ZZ )  ->  (
( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  mod 
D )  =  ( ( B  x.  C
)  mod  D )
)
6862, 63, 66, 67syl3anc 1184 . . . . . 6  |-  ( ( B  e.  RR  /\  ( C  e.  ZZ  /\  D  e.  RR+ )
)  ->  ( (
( B  x.  C
)  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  mod 
D )  =  ( ( B  x.  C
)  mod  D )
)
6968adantll 695 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ZZ  /\  D  e.  RR+ ) )  ->  (
( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  mod 
D )  =  ( ( B  x.  C
)  mod  D )
)
7059, 69eqeq12d 2418 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ZZ  /\  D  e.  RR+ ) )  ->  (
( ( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D
) ) ) ) )  mod  D )  =  ( ( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  mod  D
)  <->  ( ( A  x.  C )  mod 
D )  =  ( ( B  x.  C
)  mod  D )
) )
7148, 70syl5ib 211 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ZZ  /\  D  e.  RR+ ) )  ->  (
( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )  =  ( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  -> 
( ( A  x.  C )  mod  D
)  =  ( ( B  x.  C )  mod  D ) ) )
7247, 71syld 42 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ZZ  /\  D  e.  RR+ ) )  ->  (
( A  mod  D
)  =  ( B  mod  D )  -> 
( ( A  x.  C )  mod  D
)  =  ( ( B  x.  C )  mod  D ) ) )
73723impia 1150 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ZZ  /\  D  e.  RR+ )  /\  ( A  mod  D )  =  ( B  mod  D
) )  ->  (
( A  x.  C
)  mod  D )  =  ( ( B  x.  C )  mod 
D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945    x. cmul 8951    - cmin 9247    / cdiv 9633   ZZcz 10238   RR+crp 10568   |_cfl 11156    mod cmo 11205
This theorem is referenced by:  modmul12d  11235  modnegd  11236  eulerthlem2  13126  fermltl  13128  odzdvds  13136  wilthlem2  20805  lgsdir2lem4  21063  lgsdirprm  21066  pellexlem6  26787
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-n0 10178  df-z 10239  df-uz 10445  df-rp 10569  df-fl 11157  df-mod 11206
  Copyright terms: Public domain W3C validator