MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moanmo Structured version   Unicode version

Theorem moanmo 2350
Description: Nested "at most one" quantifiers. (Contributed by NM, 25-Jan-2006.)
Assertion
Ref Expression
moanmo  |-  E* x
( ph  /\  E* x ph )

Proof of Theorem moanmo
StepHypRef Expression
1 id 22 . . 3  |-  ( E* x ph  ->  E* x ph )
2 nfmo1 2297 . . . 4  |-  F/ x E* x ph
32moanim 2347 . . 3  |-  ( E* x ( E* x ph  /\  ph )  <->  ( E* x ph  ->  E* x ph ) )
41, 3mpbir 209 . 2  |-  E* x
( E* x ph  /\ 
ph )
5 ancom 448 . . 3  |-  ( (
ph  /\  E* x ph )  <->  ( E* x ph  /\  ph ) )
65mobii 2309 . 2  |-  ( E* x ( ph  /\  E* x ph )  <->  E* x
( E* x ph  /\ 
ph ) )
74, 6mpbir 209 1  |-  E* x
( ph  /\  E* x ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367   E*wmo 2285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-10 1842  ax-11 1847  ax-12 1859
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-tru 1401  df-ex 1618  df-nf 1622  df-eu 2288  df-mo 2289
This theorem is referenced by:  moaneu  2351
  Copyright terms: Public domain W3C validator