MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moanim Structured version   Visualization version   Unicode version

Theorem moanim 2358
Description: Introduction of a conjunct into "at most one" quantifier. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Wolf Lammen, 24-Dec-2018.)
Hypothesis
Ref Expression
moanim.1  |-  F/ x ph
Assertion
Ref Expression
moanim  |-  ( E* x ( ph  /\  ps )  <->  ( ph  ->  E* x ps ) )

Proof of Theorem moanim
StepHypRef Expression
1 moanim.1 . . . 4  |-  F/ x ph
2 ibar 507 . . . 4  |-  ( ph  ->  ( ps  <->  ( ph  /\ 
ps ) ) )
31, 2mobid 2318 . . 3  |-  ( ph  ->  ( E* x ps  <->  E* x ( ph  /\  ps ) ) )
43biimprcd 229 . 2  |-  ( E* x ( ph  /\  ps )  ->  ( ph  ->  E* x ps )
)
5 simpl 459 . . . . . 6  |-  ( (
ph  /\  ps )  ->  ph )
61, 5exlimi 1995 . . . . 5  |-  ( E. x ( ph  /\  ps )  ->  ph )
7 exmo 2324 . . . . . 6  |-  ( E. x ( ph  /\  ps )  \/  E* x ( ph  /\  ps ) )
87ori 377 . . . . 5  |-  ( -. 
E. x ( ph  /\ 
ps )  ->  E* x ( ph  /\  ps ) )
96, 8nsyl4 148 . . . 4  |-  ( -. 
E* x ( ph  /\ 
ps )  ->  ph )
109con1i 133 . . 3  |-  ( -. 
ph  ->  E* x (
ph  /\  ps )
)
11 moan 2353 . . 3  |-  ( E* x ps  ->  E* x ( ph  /\  ps ) )
1210, 11ja 165 . 2  |-  ( (
ph  ->  E* x ps )  ->  E* x
( ph  /\  ps )
)
134, 12impbii 191 1  |-  ( E* x ( ph  /\  ps )  <->  ( ph  ->  E* x ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371   E.wex 1663   F/wnf 1667   E*wmo 2300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-10 1915  ax-12 1933
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-ex 1664  df-nf 1668  df-eu 2303  df-mo 2304
This theorem is referenced by:  moanimv  2360  moanmo  2361
  Copyright terms: Public domain W3C validator