MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mo3 Structured version   Unicode version

Theorem mo3 2305
Description: Alternate definition of "at most one." Definition of [BellMachover] p. 460, except that definition has the side condition that  y not occur in  ph in place of our hypothesis. (Contributed by NM, 8-Mar-1995.) (Proof shortened by Wolf Lammen, 18-Aug-2019.)
Hypothesis
Ref Expression
mo3.1  |-  F/ y
ph
Assertion
Ref Expression
mo3  |-  ( E* x ph  <->  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem mo3
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfmo1 2274 . . 3  |-  F/ x E* x ph
2 mo3.1 . . . . 5  |-  F/ y
ph
32nfmo 2280 . . . 4  |-  F/ y E* x ph
4 mo2v 2267 . . . . 5  |-  ( E* x ph  <->  E. z A. x ( ph  ->  x  =  z ) )
5 sp 1796 . . . . . . . 8  |-  ( A. x ( ph  ->  x  =  z )  -> 
( ph  ->  x  =  z ) )
6 spsbim 2093 . . . . . . . . 9  |-  ( A. x ( ph  ->  x  =  z )  -> 
( [ y  /  x ] ph  ->  [ y  /  x ] x  =  z ) )
7 equsb3 2144 . . . . . . . . 9  |-  ( [ y  /  x ]
x  =  z  <->  y  =  z )
86, 7syl6ib 226 . . . . . . . 8  |-  ( A. x ( ph  ->  x  =  z )  -> 
( [ y  /  x ] ph  ->  y  =  z ) )
95, 8anim12d 563 . . . . . . 7  |-  ( A. x ( ph  ->  x  =  z )  -> 
( ( ph  /\  [ y  /  x ] ph )  ->  ( x  =  z  /\  y  =  z ) ) )
10 equtr2 1742 . . . . . . 7  |-  ( ( x  =  z  /\  y  =  z )  ->  x  =  y )
119, 10syl6 33 . . . . . 6  |-  ( A. x ( ph  ->  x  =  z )  -> 
( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) )
1211exlimiv 1689 . . . . 5  |-  ( E. z A. x (
ph  ->  x  =  z )  ->  ( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y )
)
134, 12sylbi 195 . . . 4  |-  ( E* x ph  ->  (
( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) )
143, 13alrimi 1813 . . 3  |-  ( E* x ph  ->  A. y
( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) )
151, 14alrimi 1813 . 2  |-  ( E* x ph  ->  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) )
16 nfs1v 2149 . . . . . . . 8  |-  F/ x [ y  /  x ] ph
17 pm3.21 448 . . . . . . . . 9  |-  ( [ y  /  x ] ph  ->  ( ph  ->  (
ph  /\  [ y  /  x ] ph )
) )
1817imim1d 75 . . . . . . . 8  |-  ( [ y  /  x ] ph  ->  ( ( (
ph  /\  [ y  /  x ] ph )  ->  x  =  y )  ->  ( ph  ->  x  =  y ) ) )
1916, 18alimd 1812 . . . . . . 7  |-  ( [ y  /  x ] ph  ->  ( A. x
( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y )  ->  A. x
( ph  ->  x  =  y ) ) )
2019com12 31 . . . . . 6  |-  ( A. x ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y )  -> 
( [ y  /  x ] ph  ->  A. x
( ph  ->  x  =  y ) ) )
2120aleximi 1623 . . . . 5  |-  ( A. y A. x ( (
ph  /\  [ y  /  x ] ph )  ->  x  =  y )  ->  ( E. y [ y  /  x ] ph  ->  E. y A. x ( ph  ->  x  =  y ) ) )
222sb8e 2132 . . . . 5  |-  ( E. x ph  <->  E. y [ y  /  x ] ph )
232mo2 2272 . . . . 5  |-  ( E* x ph  <->  E. y A. x ( ph  ->  x  =  y ) )
2421, 22, 233imtr4g 270 . . . 4  |-  ( A. y A. x ( (
ph  /\  [ y  /  x ] ph )  ->  x  =  y )  ->  ( E. x ph  ->  E* x ph ) )
25 moabs 2295 . . . 4  |-  ( E* x ph  <->  ( E. x ph  ->  E* x ph ) )
2624, 25sylibr 212 . . 3  |-  ( A. y A. x ( (
ph  /\  [ y  /  x ] ph )  ->  x  =  y )  ->  E* x ph )
2726alcoms 1783 . 2  |-  ( A. x A. y ( (
ph  /\  [ y  /  x ] ph )  ->  x  =  y )  ->  E* x ph )
2815, 27impbii 188 1  |-  ( E* x ph  <->  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1368   E.wex 1587   F/wnf 1590   [wsb 1702   E*wmo 2261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265
This theorem is referenced by:  mo  2307  eu2  2309  mo4f  2323  mopickOLD  2347  mopickOLDOLD  2348  2mo  2367  2moOLD  2368  rmo3  3385  isarep2  5598  mo5f  26005  rmo3f  26016  rmo4fOLD  26017  pm14.12  29815  bnj580  32208
  Copyright terms: Public domain W3C validator