Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mo2vOLD Structured version   Unicode version

Theorem mo2vOLD 2271
 Description: Obsolete proof of mo2v 2270 as of 10-Nov-2019. (Contributed by Wolf Lammen, 27-May-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
mo2vOLD
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem mo2vOLD
StepHypRef Expression
1 df-mo 2268 . 2
2 df-eu 2267 . . 3
32imbi2i 313 . 2
4 alnex 1661 . . . . . 6
5 pm2.21 111 . . . . . . 7
65alimi 1680 . . . . . 6
74, 6sylbir 216 . . . . 5
8 19.8a 1907 . . . . 5
97, 8syl 17 . . . 4
10 biimp 196 . . . . . 6
1110alimi 1680 . . . . 5
1211eximi 1702 . . . 4
139, 12ja 164 . . 3
14 nfia1 2009 . . . . . 6
15 id 23 . . . . . . . . . 10
16 ax-5 1748 . . . . . . . . . . 11
17 ax-12 1904 . . . . . . . . . . 11
1816, 17syl5com 31 . . . . . . . . . 10
1915, 18embantd 56 . . . . . . . . 9
2019spsd 1917 . . . . . . . 8
2120ancld 555 . . . . . . 7
22 albiim 1743 . . . . . . 7
2321, 22syl6ibr 230 . . . . . 6
2414, 23exlimi 1967 . . . . 5
2524eximdv 1754 . . . 4
2625com12 32 . . 3
2713, 26impbii 190 . 2
281, 3, 273bitri 274 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wb 187   wa 370  wal 1435  wex 1659  weu 2263  wmo 2264 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-10 1886  ax-12 1904 This theorem depends on definitions:  df-bi 188  df-an 372  df-ex 1660  df-nf 1664  df-eu 2267  df-mo 2268 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator