MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mo2v Structured version   Visualization version   Unicode version

Theorem mo2v 2306
Description: Alternate definition of "at most one." Unlike mo2 2308, which is slightly more general, it does not depend on ax-11 1920 and ax-13 2091, whence it is preferable within predicate logic. Elsewhere, most theorems depend on these axioms anyway, so this advantage is no longer important. (Contributed by Wolf Lammen, 27-May-2019.) (Proof shortened by Wolf Lammen, 10-Nov-2019.)
Assertion
Ref Expression
mo2v  |-  ( E* x ph  <->  E. y A. x ( ph  ->  x  =  y ) )
Distinct variable groups:    x, y    ph, y
Allowed substitution hint:    ph( x)

Proof of Theorem mo2v
StepHypRef Expression
1 df-mo 2304 . 2  |-  ( E* x ph  <->  ( E. x ph  ->  E! x ph ) )
2 df-eu 2303 . . 3  |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
32imbi2i 314 . 2  |-  ( ( E. x ph  ->  E! x ph )  <->  ( E. x ph  ->  E. y A. x ( ph  <->  x  =  y ) ) )
4 alnex 1665 . . . . . . 7  |-  ( A. x  -.  ph  <->  -.  E. x ph )
5 pm2.21 112 . . . . . . . 8  |-  ( -. 
ph  ->  ( ph  ->  x  =  y ) )
65alimi 1684 . . . . . . 7  |-  ( A. x  -.  ph  ->  A. x
( ph  ->  x  =  y ) )
74, 6sylbir 217 . . . . . 6  |-  ( -. 
E. x ph  ->  A. x ( ph  ->  x  =  y ) )
87eximi 1707 . . . . 5  |-  ( E. y  -.  E. x ph  ->  E. y A. x
( ph  ->  x  =  y ) )
9819.23bi 1949 . . . 4  |-  ( -. 
E. x ph  ->  E. y A. x (
ph  ->  x  =  y ) )
10 biimp 197 . . . . . 6  |-  ( (
ph 
<->  x  =  y )  ->  ( ph  ->  x  =  y ) )
1110alimi 1684 . . . . 5  |-  ( A. x ( ph  <->  x  =  y )  ->  A. x
( ph  ->  x  =  y ) )
1211eximi 1707 . . . 4  |-  ( E. y A. x (
ph 
<->  x  =  y )  ->  E. y A. x
( ph  ->  x  =  y ) )
139, 12ja 165 . . 3  |-  ( ( E. x ph  ->  E. y A. x (
ph 
<->  x  =  y ) )  ->  E. y A. x ( ph  ->  x  =  y ) )
14 nfia1 2037 . . . . . 6  |-  F/ x
( A. x (
ph  ->  x  =  y )  ->  A. x
( ph  <->  x  =  y
) )
15 id 22 . . . . . . . . . 10  |-  ( ph  ->  ph )
16 ax12v 1934 . . . . . . . . . . 11  |-  ( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph )
) )
1716com12 32 . . . . . . . . . 10  |-  ( ph  ->  ( x  =  y  ->  A. x ( x  =  y  ->  ph )
) )
1815, 17embantd 56 . . . . . . . . 9  |-  ( ph  ->  ( ( ph  ->  x  =  y )  ->  A. x ( x  =  y  ->  ph ) ) )
1918spsd 1945 . . . . . . . 8  |-  ( ph  ->  ( A. x (
ph  ->  x  =  y )  ->  A. x
( x  =  y  ->  ph ) ) )
2019ancld 556 . . . . . . 7  |-  ( ph  ->  ( A. x (
ph  ->  x  =  y )  ->  ( A. x ( ph  ->  x  =  y )  /\  A. x ( x  =  y  ->  ph ) ) ) )
21 albiim 1752 . . . . . . 7  |-  ( A. x ( ph  <->  x  =  y )  <->  ( A. x ( ph  ->  x  =  y )  /\  A. x ( x  =  y  ->  ph ) ) )
2220, 21syl6ibr 231 . . . . . 6  |-  ( ph  ->  ( A. x (
ph  ->  x  =  y )  ->  A. x
( ph  <->  x  =  y
) ) )
2314, 22exlimi 1995 . . . . 5  |-  ( E. x ph  ->  ( A. x ( ph  ->  x  =  y )  ->  A. x ( ph  <->  x  =  y ) ) )
2423eximdv 1764 . . . 4  |-  ( E. x ph  ->  ( E. y A. x (
ph  ->  x  =  y )  ->  E. y A. x ( ph  <->  x  =  y ) ) )
2524com12 32 . . 3  |-  ( E. y A. x (
ph  ->  x  =  y )  ->  ( E. x ph  ->  E. y A. x ( ph  <->  x  =  y ) ) )
2613, 25impbii 191 . 2  |-  ( ( E. x ph  ->  E. y A. x (
ph 
<->  x  =  y ) )  <->  E. y A. x
( ph  ->  x  =  y ) )
271, 3, 263bitri 275 1  |-  ( E* x ph  <->  E. y A. x ( ph  ->  x  =  y ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371   A.wal 1442   E.wex 1663   E!weu 2299   E*wmo 2300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-10 1915  ax-12 1933
This theorem depends on definitions:  df-bi 189  df-an 373  df-ex 1664  df-nf 1668  df-eu 2303  df-mo 2304
This theorem is referenced by:  mo2  2308  eu3v  2327  mo3  2336  sbmo  2344  moim  2348  mopick  2364  2mo2  2379  mo2icl  3217  moabex  4659  dffun3  5593  dffun6f  5596  grothprim  9259  bj-mo3OLD  31447  wl-mo2df  31899  wl-mo2t  31904  wl-mo3t  31905  dffrege115  36574
  Copyright terms: Public domain W3C validator