![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mo2 | Structured version Visualization version Unicode version |
Description: Alternate definition of "at most one." (Contributed by NM, 8-Mar-1995.) Restrict dummy variable z. (Revised by Wolf Lammen, 28-May-2019.) |
Ref | Expression |
---|---|
mo2.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mo2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mo2v 2316 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | mo2.1 |
. . . . 5
![]() ![]() ![]() ![]() | |
3 | nfv 1771 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | nfim 2013 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4 | nfal 2040 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | nfv 1771 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | equequ2 1878 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 7 | imbi2d 322 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 8 | albidv 1777 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 5, 6, 9 | cbvex 2125 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 1, 10 | bitri 257 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1679 ax-4 1692 ax-5 1768 ax-6 1815 ax-7 1861 ax-10 1925 ax-11 1930 ax-12 1943 ax-13 2101 |
This theorem depends on definitions: df-bi 190 df-an 377 df-ex 1674 df-nf 1678 df-eu 2313 df-mo 2314 |
This theorem is referenced by: mo3 2346 mo 2347 rmo2 3367 nmo 28169 bj-eu3f 31486 bj-mo3OLD 31491 |
Copyright terms: Public domain | W3C validator |