![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mnfnepnf | Structured version Visualization version Unicode version |
Description: Minus and plus infinity are different (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
mnfnepnf |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnemnf 11440 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | necomi 2697 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1677 ax-4 1690 ax-5 1766 ax-6 1813 ax-7 1859 ax-8 1906 ax-9 1913 ax-10 1932 ax-11 1937 ax-12 1950 ax-13 2104 ax-ext 2451 ax-sep 4518 ax-pow 4579 ax-un 6602 ax-cnex 9613 |
This theorem depends on definitions: df-bi 190 df-or 377 df-an 378 df-tru 1455 df-ex 1672 df-nf 1676 df-sb 1806 df-clab 2458 df-cleq 2464 df-clel 2467 df-nfc 2601 df-ne 2643 df-nel 2644 df-rex 2762 df-rab 2765 df-v 3033 df-un 3395 df-in 3397 df-ss 3404 df-pw 3944 df-sn 3960 df-pr 3962 df-uni 4191 df-pnf 9695 df-mnf 9696 df-xr 9697 |
This theorem is referenced by: xrnepnf 11443 xnegmnf 11526 xaddmnf1 11544 xaddmnf2 11545 mnfaddpnf 11547 xaddnepnf 11552 xmullem2 11576 xadddilem 11605 resup 12127 |
Copyright terms: Public domain | W3C validator |