MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndrid Structured version   Unicode version

Theorem mndrid 15434
Description: The identity element of a monoid is a right identity. (Contributed by NM, 18-Aug-2011.)
Hypotheses
Ref Expression
mndlrid.b  |-  B  =  ( Base `  G
)
mndlrid.p  |-  .+  =  ( +g  `  G )
mndlrid.o  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
mndrid  |-  ( ( G  e.  Mnd  /\  X  e.  B )  ->  ( X  .+  .0.  )  =  X )

Proof of Theorem mndrid
StepHypRef Expression
1 mndlrid.b . . 3  |-  B  =  ( Base `  G
)
2 mndlrid.p . . 3  |-  .+  =  ( +g  `  G )
3 mndlrid.o . . 3  |-  .0.  =  ( 0g `  G )
41, 2, 3mndlrid 15432 . 2  |-  ( ( G  e.  Mnd  /\  X  e.  B )  ->  ( (  .0.  .+  X )  =  X  /\  ( X  .+  .0.  )  =  X
) )
54simprd 463 1  |-  ( ( G  e.  Mnd  /\  X  e.  B )  ->  ( X  .+  .0.  )  =  X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   ` cfv 5413  (class class class)co 6086   Basecbs 14166   +g cplusg 14230   0gc0g 14370   Mndcmnd 15401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-iota 5376  df-fun 5415  df-fv 5421  df-riota 6047  df-ov 6089  df-0g 14372  df-mnd 15407
This theorem is referenced by:  mndfo  15437  issubmnd  15441  ress0g  15442  submnd0  15443  prdsidlem  15445  imasmnd  15451  mrcmndind  15485  gsumccat  15510  grprid  15560  mulgnn0dir  15641  cntzsubm  15844  oppgmnd  15860  lsmub1x  16136  gsumval3OLD  16373  gsumval3  16376  gsumzsplit  16409  gsumzsplitOLD  16410  srgbinomlem3  16628  mndvrid  18269  mndifsplit  18417  gsummatr01  18440  smadiadet  18451  tsmssplit  19701  tsmsxp  19704  slmd0vrid  26190
  Copyright terms: Public domain W3C validator