MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndpropd Structured version   Unicode version

Theorem mndpropd 16086
Description: If two structures have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, one is a monoid iff the other one is. (Contributed by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
mndpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
mndpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
mndpropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
Assertion
Ref Expression
mndpropd  |-  ( ph  ->  ( K  e.  Mnd  <->  L  e.  Mnd ) )
Distinct variable groups:    x, y, B    x, K, y    ph, x, y    x, L, y

Proof of Theorem mndpropd
Dummy variables  u  s  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 753 . . . . . 6  |-  ( ( ( ph  /\  K  e.  Mnd )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  K  e.  Mnd )
2 simprl 754 . . . . . . 7  |-  ( ( ( ph  /\  K  e.  Mnd )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  x  e.  B )
3 mndpropd.1 . . . . . . . 8  |-  ( ph  ->  B  =  ( Base `  K ) )
43ad2antrr 723 . . . . . . 7  |-  ( ( ( ph  /\  K  e.  Mnd )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  B  =  ( Base `  K )
)
52, 4eleqtrd 2486 . . . . . 6  |-  ( ( ( ph  /\  K  e.  Mnd )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  x  e.  ( Base `  K )
)
6 simprr 755 . . . . . . 7  |-  ( ( ( ph  /\  K  e.  Mnd )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  y  e.  B )
76, 4eleqtrd 2486 . . . . . 6  |-  ( ( ( ph  /\  K  e.  Mnd )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  y  e.  ( Base `  K )
)
8 eqid 2396 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
9 eqid 2396 . . . . . . 7  |-  ( +g  `  K )  =  ( +g  `  K )
108, 9mndcl 16069 . . . . . 6  |-  ( ( K  e.  Mnd  /\  x  e.  ( Base `  K )  /\  y  e.  ( Base `  K
) )  ->  (
x ( +g  `  K
) y )  e.  ( Base `  K
) )
111, 5, 7, 10syl3anc 1226 . . . . 5  |-  ( ( ( ph  /\  K  e.  Mnd )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x
( +g  `  K ) y )  e.  (
Base `  K )
)
1211, 4eleqtrrd 2487 . . . 4  |-  ( ( ( ph  /\  K  e.  Mnd )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x
( +g  `  K ) y )  e.  B
)
1312ralrimivva 2817 . . 3  |-  ( (
ph  /\  K  e.  Mnd )  ->  A. x  e.  B  A. y  e.  B  ( x
( +g  `  K ) y )  e.  B
)
1413ex 432 . 2  |-  ( ph  ->  ( K  e.  Mnd  ->  A. x  e.  B  A. y  e.  B  ( x ( +g  `  K ) y )  e.  B ) )
15 simplr 753 . . . . . 6  |-  ( ( ( ph  /\  L  e.  Mnd )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  L  e.  Mnd )
16 simprl 754 . . . . . . 7  |-  ( ( ( ph  /\  L  e.  Mnd )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  x  e.  B )
17 mndpropd.2 . . . . . . . 8  |-  ( ph  ->  B  =  ( Base `  L ) )
1817ad2antrr 723 . . . . . . 7  |-  ( ( ( ph  /\  L  e.  Mnd )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  B  =  ( Base `  L )
)
1916, 18eleqtrd 2486 . . . . . 6  |-  ( ( ( ph  /\  L  e.  Mnd )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  x  e.  ( Base `  L )
)
20 simprr 755 . . . . . . 7  |-  ( ( ( ph  /\  L  e.  Mnd )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  y  e.  B )
2120, 18eleqtrd 2486 . . . . . 6  |-  ( ( ( ph  /\  L  e.  Mnd )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  y  e.  ( Base `  L )
)
22 eqid 2396 . . . . . . 7  |-  ( Base `  L )  =  (
Base `  L )
23 eqid 2396 . . . . . . 7  |-  ( +g  `  L )  =  ( +g  `  L )
2422, 23mndcl 16069 . . . . . 6  |-  ( ( L  e.  Mnd  /\  x  e.  ( Base `  L )  /\  y  e.  ( Base `  L
) )  ->  (
x ( +g  `  L
) y )  e.  ( Base `  L
) )
2515, 19, 21, 24syl3anc 1226 . . . . 5  |-  ( ( ( ph  /\  L  e.  Mnd )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x
( +g  `  L ) y )  e.  (
Base `  L )
)
26 mndpropd.3 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
2726adantlr 712 . . . . 5  |-  ( ( ( ph  /\  L  e.  Mnd )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x
( +g  `  K ) y )  =  ( x ( +g  `  L
) y ) )
2825, 27, 183eltr4d 2499 . . . 4  |-  ( ( ( ph  /\  L  e.  Mnd )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x
( +g  `  K ) y )  e.  B
)
2928ralrimivva 2817 . . 3  |-  ( (
ph  /\  L  e.  Mnd )  ->  A. x  e.  B  A. y  e.  B  ( x
( +g  `  K ) y )  e.  B
)
3029ex 432 . 2  |-  ( ph  ->  ( L  e.  Mnd  ->  A. x  e.  B  A. y  e.  B  ( x ( +g  `  K ) y )  e.  B ) )
3126oveqrspc2v 6241 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  B  /\  v  e.  B ) )  -> 
( u ( +g  `  K ) v )  =  ( u ( +g  `  L ) v ) )
3231adantlr 712 . . . . . . . . 9  |-  ( ( ( ph  /\  A. x  e.  B  A. y  e.  B  (
x ( +g  `  K
) y )  e.  B )  /\  (
u  e.  B  /\  v  e.  B )
)  ->  ( u
( +g  `  K ) v )  =  ( u ( +g  `  L
) v ) )
3332eleq1d 2465 . . . . . . . 8  |-  ( ( ( ph  /\  A. x  e.  B  A. y  e.  B  (
x ( +g  `  K
) y )  e.  B )  /\  (
u  e.  B  /\  v  e.  B )
)  ->  ( (
u ( +g  `  K
) v )  e.  B  <->  ( u ( +g  `  L ) v )  e.  B
) )
34 simplll 757 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  A. x  e.  B  A. y  e.  B  (
x ( +g  `  K
) y )  e.  B )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  w  e.  B )  ->  ph )
35 simplrl 759 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  A. x  e.  B  A. y  e.  B  (
x ( +g  `  K
) y )  e.  B )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  w  e.  B )  ->  u  e.  B )
36 simplrr 760 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  A. x  e.  B  A. y  e.  B  (
x ( +g  `  K
) y )  e.  B )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  w  e.  B )  ->  v  e.  B )
37 simpllr 758 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  A. x  e.  B  A. y  e.  B  (
x ( +g  `  K
) y )  e.  B )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  w  e.  B )  ->  A. x  e.  B  A. y  e.  B  ( x
( +g  `  K ) y )  e.  B
)
38 ovrspc2v 6240 . . . . . . . . . . . . 13  |-  ( ( ( u  e.  B  /\  v  e.  B
)  /\  A. x  e.  B  A. y  e.  B  ( x
( +g  `  K ) y )  e.  B
)  ->  ( u
( +g  `  K ) v )  e.  B
)
3935, 36, 37, 38syl21anc 1225 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  A. x  e.  B  A. y  e.  B  (
x ( +g  `  K
) y )  e.  B )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  w  e.  B )  ->  (
u ( +g  `  K
) v )  e.  B )
40 simpr 459 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  A. x  e.  B  A. y  e.  B  (
x ( +g  `  K
) y )  e.  B )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  w  e.  B )  ->  w  e.  B )
4126oveqrspc2v 6241 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
u ( +g  `  K
) v )  e.  B  /\  w  e.  B ) )  -> 
( ( u ( +g  `  K ) v ) ( +g  `  K ) w )  =  ( ( u ( +g  `  K
) v ) ( +g  `  L ) w ) )
4234, 39, 40, 41syl12anc 1224 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  A. x  e.  B  A. y  e.  B  (
x ( +g  `  K
) y )  e.  B )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  w  e.  B )  ->  (
( u ( +g  `  K ) v ) ( +g  `  K
) w )  =  ( ( u ( +g  `  K ) v ) ( +g  `  L ) w ) )
4334, 35, 36, 31syl12anc 1224 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  A. x  e.  B  A. y  e.  B  (
x ( +g  `  K
) y )  e.  B )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  w  e.  B )  ->  (
u ( +g  `  K
) v )  =  ( u ( +g  `  L ) v ) )
4443oveq1d 6233 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  A. x  e.  B  A. y  e.  B  (
x ( +g  `  K
) y )  e.  B )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  w  e.  B )  ->  (
( u ( +g  `  K ) v ) ( +g  `  L
) w )  =  ( ( u ( +g  `  L ) v ) ( +g  `  L ) w ) )
4542, 44eqtrd 2437 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A. x  e.  B  A. y  e.  B  (
x ( +g  `  K
) y )  e.  B )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  w  e.  B )  ->  (
( u ( +g  `  K ) v ) ( +g  `  K
) w )  =  ( ( u ( +g  `  L ) v ) ( +g  `  L ) w ) )
46 ovrspc2v 6240 . . . . . . . . . . . . 13  |-  ( ( ( v  e.  B  /\  w  e.  B
)  /\  A. x  e.  B  A. y  e.  B  ( x
( +g  `  K ) y )  e.  B
)  ->  ( v
( +g  `  K ) w )  e.  B
)
4736, 40, 37, 46syl21anc 1225 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  A. x  e.  B  A. y  e.  B  (
x ( +g  `  K
) y )  e.  B )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  w  e.  B )  ->  (
v ( +g  `  K
) w )  e.  B )
4826oveqrspc2v 6241 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  B  /\  (
v ( +g  `  K
) w )  e.  B ) )  -> 
( u ( +g  `  K ) ( v ( +g  `  K
) w ) )  =  ( u ( +g  `  L ) ( v ( +g  `  K ) w ) ) )
4934, 35, 47, 48syl12anc 1224 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  A. x  e.  B  A. y  e.  B  (
x ( +g  `  K
) y )  e.  B )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  w  e.  B )  ->  (
u ( +g  `  K
) ( v ( +g  `  K ) w ) )  =  ( u ( +g  `  L ) ( v ( +g  `  K
) w ) ) )
5026oveqrspc2v 6241 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( v  e.  B  /\  w  e.  B ) )  -> 
( v ( +g  `  K ) w )  =  ( v ( +g  `  L ) w ) )
5134, 36, 40, 50syl12anc 1224 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  A. x  e.  B  A. y  e.  B  (
x ( +g  `  K
) y )  e.  B )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  w  e.  B )  ->  (
v ( +g  `  K
) w )  =  ( v ( +g  `  L ) w ) )
5251oveq2d 6234 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  A. x  e.  B  A. y  e.  B  (
x ( +g  `  K
) y )  e.  B )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  w  e.  B )  ->  (
u ( +g  `  L
) ( v ( +g  `  K ) w ) )  =  ( u ( +g  `  L ) ( v ( +g  `  L
) w ) ) )
5349, 52eqtrd 2437 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A. x  e.  B  A. y  e.  B  (
x ( +g  `  K
) y )  e.  B )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  w  e.  B )  ->  (
u ( +g  `  K
) ( v ( +g  `  K ) w ) )  =  ( u ( +g  `  L ) ( v ( +g  `  L
) w ) ) )
5445, 53eqeq12d 2418 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A. x  e.  B  A. y  e.  B  (
x ( +g  `  K
) y )  e.  B )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  w  e.  B )  ->  (
( ( u ( +g  `  K ) v ) ( +g  `  K ) w )  =  ( u ( +g  `  K ) ( v ( +g  `  K ) w ) )  <->  ( ( u ( +g  `  L
) v ) ( +g  `  L ) w )  =  ( u ( +g  `  L
) ( v ( +g  `  L ) w ) ) ) )
5554ralbidva 2832 . . . . . . . 8  |-  ( ( ( ph  /\  A. x  e.  B  A. y  e.  B  (
x ( +g  `  K
) y )  e.  B )  /\  (
u  e.  B  /\  v  e.  B )
)  ->  ( A. w  e.  B  (
( u ( +g  `  K ) v ) ( +g  `  K
) w )  =  ( u ( +g  `  K ) ( v ( +g  `  K
) w ) )  <->  A. w  e.  B  ( ( u ( +g  `  L ) v ) ( +g  `  L ) w )  =  ( u ( +g  `  L ) ( v ( +g  `  L ) w ) ) ) )
5633, 55anbi12d 708 . . . . . . 7  |-  ( ( ( ph  /\  A. x  e.  B  A. y  e.  B  (
x ( +g  `  K
) y )  e.  B )  /\  (
u  e.  B  /\  v  e.  B )
)  ->  ( (
( u ( +g  `  K ) v )  e.  B  /\  A. w  e.  B  (
( u ( +g  `  K ) v ) ( +g  `  K
) w )  =  ( u ( +g  `  K ) ( v ( +g  `  K
) w ) ) )  <->  ( ( u ( +g  `  L
) v )  e.  B  /\  A. w  e.  B  ( (
u ( +g  `  L
) v ) ( +g  `  L ) w )  =  ( u ( +g  `  L
) ( v ( +g  `  L ) w ) ) ) ) )
57562ralbidva 2838 . . . . . 6  |-  ( (
ph  /\  A. x  e.  B  A. y  e.  B  ( x
( +g  `  K ) y )  e.  B
)  ->  ( A. u  e.  B  A. v  e.  B  (
( u ( +g  `  K ) v )  e.  B  /\  A. w  e.  B  (
( u ( +g  `  K ) v ) ( +g  `  K
) w )  =  ( u ( +g  `  K ) ( v ( +g  `  K
) w ) ) )  <->  A. u  e.  B  A. v  e.  B  ( ( u ( +g  `  L ) v )  e.  B  /\  A. w  e.  B  ( ( u ( +g  `  L ) v ) ( +g  `  L ) w )  =  ( u ( +g  `  L ) ( v ( +g  `  L ) w ) ) ) ) )
583adantr 463 . . . . . . 7  |-  ( (
ph  /\  A. x  e.  B  A. y  e.  B  ( x
( +g  `  K ) y )  e.  B
)  ->  B  =  ( Base `  K )
)
5958eleq2d 2466 . . . . . . . . 9  |-  ( (
ph  /\  A. x  e.  B  A. y  e.  B  ( x
( +g  `  K ) y )  e.  B
)  ->  ( (
u ( +g  `  K
) v )  e.  B  <->  ( u ( +g  `  K ) v )  e.  (
Base `  K )
) )
6058raleqdv 3002 . . . . . . . . 9  |-  ( (
ph  /\  A. x  e.  B  A. y  e.  B  ( x
( +g  `  K ) y )  e.  B
)  ->  ( A. w  e.  B  (
( u ( +g  `  K ) v ) ( +g  `  K
) w )  =  ( u ( +g  `  K ) ( v ( +g  `  K
) w ) )  <->  A. w  e.  ( Base `  K ) ( ( u ( +g  `  K ) v ) ( +g  `  K
) w )  =  ( u ( +g  `  K ) ( v ( +g  `  K
) w ) ) ) )
6159, 60anbi12d 708 . . . . . . . 8  |-  ( (
ph  /\  A. x  e.  B  A. y  e.  B  ( x
( +g  `  K ) y )  e.  B
)  ->  ( (
( u ( +g  `  K ) v )  e.  B  /\  A. w  e.  B  (
( u ( +g  `  K ) v ) ( +g  `  K
) w )  =  ( u ( +g  `  K ) ( v ( +g  `  K
) w ) ) )  <->  ( ( u ( +g  `  K
) v )  e.  ( Base `  K
)  /\  A. w  e.  ( Base `  K
) ( ( u ( +g  `  K
) v ) ( +g  `  K ) w )  =  ( u ( +g  `  K
) ( v ( +g  `  K ) w ) ) ) ) )
6258, 61raleqbidv 3010 . . . . . . 7  |-  ( (
ph  /\  A. x  e.  B  A. y  e.  B  ( x
( +g  `  K ) y )  e.  B
)  ->  ( A. v  e.  B  (
( u ( +g  `  K ) v )  e.  B  /\  A. w  e.  B  (
( u ( +g  `  K ) v ) ( +g  `  K
) w )  =  ( u ( +g  `  K ) ( v ( +g  `  K
) w ) ) )  <->  A. v  e.  (
Base `  K )
( ( u ( +g  `  K ) v )  e.  (
Base `  K )  /\  A. w  e.  (
Base `  K )
( ( u ( +g  `  K ) v ) ( +g  `  K ) w )  =  ( u ( +g  `  K ) ( v ( +g  `  K ) w ) ) ) ) )
6358, 62raleqbidv 3010 . . . . . 6  |-  ( (
ph  /\  A. x  e.  B  A. y  e.  B  ( x
( +g  `  K ) y )  e.  B
)  ->  ( A. u  e.  B  A. v  e.  B  (
( u ( +g  `  K ) v )  e.  B  /\  A. w  e.  B  (
( u ( +g  `  K ) v ) ( +g  `  K
) w )  =  ( u ( +g  `  K ) ( v ( +g  `  K
) w ) ) )  <->  A. u  e.  (
Base `  K ) A. v  e.  ( Base `  K ) ( ( u ( +g  `  K ) v )  e.  ( Base `  K
)  /\  A. w  e.  ( Base `  K
) ( ( u ( +g  `  K
) v ) ( +g  `  K ) w )  =  ( u ( +g  `  K
) ( v ( +g  `  K ) w ) ) ) ) )
6417adantr 463 . . . . . . 7  |-  ( (
ph  /\  A. x  e.  B  A. y  e.  B  ( x
( +g  `  K ) y )  e.  B
)  ->  B  =  ( Base `  L )
)
6564eleq2d 2466 . . . . . . . . 9  |-  ( (
ph  /\  A. x  e.  B  A. y  e.  B  ( x
( +g  `  K ) y )  e.  B
)  ->  ( (
u ( +g  `  L
) v )  e.  B  <->  ( u ( +g  `  L ) v )  e.  (
Base `  L )
) )
6664raleqdv 3002 . . . . . . . . 9  |-  ( (
ph  /\  A. x  e.  B  A. y  e.  B  ( x
( +g  `  K ) y )  e.  B
)  ->  ( A. w  e.  B  (
( u ( +g  `  L ) v ) ( +g  `  L
) w )  =  ( u ( +g  `  L ) ( v ( +g  `  L
) w ) )  <->  A. w  e.  ( Base `  L ) ( ( u ( +g  `  L ) v ) ( +g  `  L
) w )  =  ( u ( +g  `  L ) ( v ( +g  `  L
) w ) ) ) )
6765, 66anbi12d 708 . . . . . . . 8  |-  ( (
ph  /\  A. x  e.  B  A. y  e.  B  ( x
( +g  `  K ) y )  e.  B
)  ->  ( (
( u ( +g  `  L ) v )  e.  B  /\  A. w  e.  B  (
( u ( +g  `  L ) v ) ( +g  `  L
) w )  =  ( u ( +g  `  L ) ( v ( +g  `  L
) w ) ) )  <->  ( ( u ( +g  `  L
) v )  e.  ( Base `  L
)  /\  A. w  e.  ( Base `  L
) ( ( u ( +g  `  L
) v ) ( +g  `  L ) w )  =  ( u ( +g  `  L
) ( v ( +g  `  L ) w ) ) ) ) )
6864, 67raleqbidv 3010 . . . . . . 7  |-  ( (
ph  /\  A. x  e.  B  A. y  e.  B  ( x
( +g  `  K ) y )  e.  B
)  ->  ( A. v  e.  B  (
( u ( +g  `  L ) v )  e.  B  /\  A. w  e.  B  (
( u ( +g  `  L ) v ) ( +g  `  L
) w )  =  ( u ( +g  `  L ) ( v ( +g  `  L
) w ) ) )  <->  A. v  e.  (
Base `  L )
( ( u ( +g  `  L ) v )  e.  (
Base `  L )  /\  A. w  e.  (
Base `  L )
( ( u ( +g  `  L ) v ) ( +g  `  L ) w )  =  ( u ( +g  `  L ) ( v ( +g  `  L ) w ) ) ) ) )
6964, 68raleqbidv 3010 . . . . . 6  |-  ( (
ph  /\  A. x  e.  B  A. y  e.  B  ( x
( +g  `  K ) y )  e.  B
)  ->  ( A. u  e.  B  A. v  e.  B  (
( u ( +g  `  L ) v )  e.  B  /\  A. w  e.  B  (
( u ( +g  `  L ) v ) ( +g  `  L
) w )  =  ( u ( +g  `  L ) ( v ( +g  `  L
) w ) ) )  <->  A. u  e.  (
Base `  L ) A. v  e.  ( Base `  L ) ( ( u ( +g  `  L ) v )  e.  ( Base `  L
)  /\  A. w  e.  ( Base `  L
) ( ( u ( +g  `  L
) v ) ( +g  `  L ) w )  =  ( u ( +g  `  L
) ( v ( +g  `  L ) w ) ) ) ) )
7057, 63, 693bitr3d 283 . . . . 5  |-  ( (
ph  /\  A. x  e.  B  A. y  e.  B  ( x
( +g  `  K ) y )  e.  B
)  ->  ( A. u  e.  ( Base `  K ) A. v  e.  ( Base `  K
) ( ( u ( +g  `  K
) v )  e.  ( Base `  K
)  /\  A. w  e.  ( Base `  K
) ( ( u ( +g  `  K
) v ) ( +g  `  K ) w )  =  ( u ( +g  `  K
) ( v ( +g  `  K ) w ) ) )  <->  A. u  e.  ( Base `  L ) A. v  e.  ( Base `  L ) ( ( u ( +g  `  L
) v )  e.  ( Base `  L
)  /\  A. w  e.  ( Base `  L
) ( ( u ( +g  `  L
) v ) ( +g  `  L ) w )  =  ( u ( +g  `  L
) ( v ( +g  `  L ) w ) ) ) ) )
71 simplll 757 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  A. x  e.  B  A. y  e.  B  (
x ( +g  `  K
) y )  e.  B )  /\  s  e.  B )  /\  u  e.  B )  ->  ph )
72 simplr 753 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  A. x  e.  B  A. y  e.  B  (
x ( +g  `  K
) y )  e.  B )  /\  s  e.  B )  /\  u  e.  B )  ->  s  e.  B )
73 simpr 459 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  A. x  e.  B  A. y  e.  B  (
x ( +g  `  K
) y )  e.  B )  /\  s  e.  B )  /\  u  e.  B )  ->  u  e.  B )
7426oveqrspc2v 6241 . . . . . . . . . . 11  |-  ( (
ph  /\  ( s  e.  B  /\  u  e.  B ) )  -> 
( s ( +g  `  K ) u )  =  ( s ( +g  `  L ) u ) )
7571, 72, 73, 74syl12anc 1224 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A. x  e.  B  A. y  e.  B  (
x ( +g  `  K
) y )  e.  B )  /\  s  e.  B )  /\  u  e.  B )  ->  (
s ( +g  `  K
) u )  =  ( s ( +g  `  L ) u ) )
7675eqeq1d 2398 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A. x  e.  B  A. y  e.  B  (
x ( +g  `  K
) y )  e.  B )  /\  s  e.  B )  /\  u  e.  B )  ->  (
( s ( +g  `  K ) u )  =  u  <->  ( s
( +g  `  L ) u )  =  u ) )
7726oveqrspc2v 6241 . . . . . . . . . . 11  |-  ( (
ph  /\  ( u  e.  B  /\  s  e.  B ) )  -> 
( u ( +g  `  K ) s )  =  ( u ( +g  `  L ) s ) )
7871, 73, 72, 77syl12anc 1224 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A. x  e.  B  A. y  e.  B  (
x ( +g  `  K
) y )  e.  B )  /\  s  e.  B )  /\  u  e.  B )  ->  (
u ( +g  `  K
) s )  =  ( u ( +g  `  L ) s ) )
7978eqeq1d 2398 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A. x  e.  B  A. y  e.  B  (
x ( +g  `  K
) y )  e.  B )  /\  s  e.  B )  /\  u  e.  B )  ->  (
( u ( +g  `  K ) s )  =  u  <->  ( u
( +g  `  L ) s )  =  u ) )
8076, 79anbi12d 708 . . . . . . . 8  |-  ( ( ( ( ph  /\  A. x  e.  B  A. y  e.  B  (
x ( +g  `  K
) y )  e.  B )  /\  s  e.  B )  /\  u  e.  B )  ->  (
( ( s ( +g  `  K ) u )  =  u  /\  ( u ( +g  `  K ) s )  =  u )  <->  ( ( s ( +g  `  L
) u )  =  u  /\  ( u ( +g  `  L
) s )  =  u ) ) )
8180ralbidva 2832 . . . . . . 7  |-  ( ( ( ph  /\  A. x  e.  B  A. y  e.  B  (
x ( +g  `  K
) y )  e.  B )  /\  s  e.  B )  ->  ( A. u  e.  B  ( ( s ( +g  `  K ) u )  =  u  /\  ( u ( +g  `  K ) s )  =  u )  <->  A. u  e.  B  ( ( s ( +g  `  L ) u )  =  u  /\  ( u ( +g  `  L ) s )  =  u ) ) )
8281rexbidva 2907 . . . . . 6  |-  ( (
ph  /\  A. x  e.  B  A. y  e.  B  ( x
( +g  `  K ) y )  e.  B
)  ->  ( E. s  e.  B  A. u  e.  B  (
( s ( +g  `  K ) u )  =  u  /\  (
u ( +g  `  K
) s )  =  u )  <->  E. s  e.  B  A. u  e.  B  ( (
s ( +g  `  L
) u )  =  u  /\  ( u ( +g  `  L
) s )  =  u ) ) )
8358raleqdv 3002 . . . . . . 7  |-  ( (
ph  /\  A. x  e.  B  A. y  e.  B  ( x
( +g  `  K ) y )  e.  B
)  ->  ( A. u  e.  B  (
( s ( +g  `  K ) u )  =  u  /\  (
u ( +g  `  K
) s )  =  u )  <->  A. u  e.  ( Base `  K
) ( ( s ( +g  `  K
) u )  =  u  /\  ( u ( +g  `  K
) s )  =  u ) ) )
8458, 83rexeqbidv 3011 . . . . . 6  |-  ( (
ph  /\  A. x  e.  B  A. y  e.  B  ( x
( +g  `  K ) y )  e.  B
)  ->  ( E. s  e.  B  A. u  e.  B  (
( s ( +g  `  K ) u )  =  u  /\  (
u ( +g  `  K
) s )  =  u )  <->  E. s  e.  ( Base `  K
) A. u  e.  ( Base `  K
) ( ( s ( +g  `  K
) u )  =  u  /\  ( u ( +g  `  K
) s )  =  u ) ) )
8564raleqdv 3002 . . . . . . 7  |-  ( (
ph  /\  A. x  e.  B  A. y  e.  B  ( x
( +g  `  K ) y )  e.  B
)  ->  ( A. u  e.  B  (
( s ( +g  `  L ) u )  =  u  /\  (
u ( +g  `  L
) s )  =  u )  <->  A. u  e.  ( Base `  L
) ( ( s ( +g  `  L
) u )  =  u  /\  ( u ( +g  `  L
) s )  =  u ) ) )
8664, 85rexeqbidv 3011 . . . . . 6  |-  ( (
ph  /\  A. x  e.  B  A. y  e.  B  ( x
( +g  `  K ) y )  e.  B
)  ->  ( E. s  e.  B  A. u  e.  B  (
( s ( +g  `  L ) u )  =  u  /\  (
u ( +g  `  L
) s )  =  u )  <->  E. s  e.  ( Base `  L
) A. u  e.  ( Base `  L
) ( ( s ( +g  `  L
) u )  =  u  /\  ( u ( +g  `  L
) s )  =  u ) ) )
8782, 84, 863bitr3d 283 . . . . 5  |-  ( (
ph  /\  A. x  e.  B  A. y  e.  B  ( x
( +g  `  K ) y )  e.  B
)  ->  ( E. s  e.  ( Base `  K ) A. u  e.  ( Base `  K
) ( ( s ( +g  `  K
) u )  =  u  /\  ( u ( +g  `  K
) s )  =  u )  <->  E. s  e.  ( Base `  L
) A. u  e.  ( Base `  L
) ( ( s ( +g  `  L
) u )  =  u  /\  ( u ( +g  `  L
) s )  =  u ) ) )
8870, 87anbi12d 708 . . . 4  |-  ( (
ph  /\  A. x  e.  B  A. y  e.  B  ( x
( +g  `  K ) y )  e.  B
)  ->  ( ( A. u  e.  ( Base `  K ) A. v  e.  ( Base `  K ) ( ( u ( +g  `  K
) v )  e.  ( Base `  K
)  /\  A. w  e.  ( Base `  K
) ( ( u ( +g  `  K
) v ) ( +g  `  K ) w )  =  ( u ( +g  `  K
) ( v ( +g  `  K ) w ) ) )  /\  E. s  e.  ( Base `  K
) A. u  e.  ( Base `  K
) ( ( s ( +g  `  K
) u )  =  u  /\  ( u ( +g  `  K
) s )  =  u ) )  <->  ( A. u  e.  ( Base `  L ) A. v  e.  ( Base `  L
) ( ( u ( +g  `  L
) v )  e.  ( Base `  L
)  /\  A. w  e.  ( Base `  L
) ( ( u ( +g  `  L
) v ) ( +g  `  L ) w )  =  ( u ( +g  `  L
) ( v ( +g  `  L ) w ) ) )  /\  E. s  e.  ( Base `  L
) A. u  e.  ( Base `  L
) ( ( s ( +g  `  L
) u )  =  u  /\  ( u ( +g  `  L
) s )  =  u ) ) ) )
898, 9ismnd 16063 . . . 4  |-  ( K  e.  Mnd  <->  ( A. u  e.  ( Base `  K ) A. v  e.  ( Base `  K
) ( ( u ( +g  `  K
) v )  e.  ( Base `  K
)  /\  A. w  e.  ( Base `  K
) ( ( u ( +g  `  K
) v ) ( +g  `  K ) w )  =  ( u ( +g  `  K
) ( v ( +g  `  K ) w ) ) )  /\  E. s  e.  ( Base `  K
) A. u  e.  ( Base `  K
) ( ( s ( +g  `  K
) u )  =  u  /\  ( u ( +g  `  K
) s )  =  u ) ) )
9022, 23ismnd 16063 . . . 4  |-  ( L  e.  Mnd  <->  ( A. u  e.  ( Base `  L ) A. v  e.  ( Base `  L
) ( ( u ( +g  `  L
) v )  e.  ( Base `  L
)  /\  A. w  e.  ( Base `  L
) ( ( u ( +g  `  L
) v ) ( +g  `  L ) w )  =  ( u ( +g  `  L
) ( v ( +g  `  L ) w ) ) )  /\  E. s  e.  ( Base `  L
) A. u  e.  ( Base `  L
) ( ( s ( +g  `  L
) u )  =  u  /\  ( u ( +g  `  L
) s )  =  u ) ) )
9188, 89, 903bitr4g 288 . . 3  |-  ( (
ph  /\  A. x  e.  B  A. y  e.  B  ( x
( +g  `  K ) y )  e.  B
)  ->  ( K  e.  Mnd  <->  L  e.  Mnd ) )
9291ex 432 . 2  |-  ( ph  ->  ( A. x  e.  B  A. y  e.  B  ( x ( +g  `  K ) y )  e.  B  ->  ( K  e.  Mnd  <->  L  e.  Mnd ) ) )
9314, 30, 92pm5.21ndd 352 1  |-  ( ph  ->  ( K  e.  Mnd  <->  L  e.  Mnd ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1399    e. wcel 1836   A.wral 2746   E.wrex 2747   ` cfv 5513  (class class class)co 6218   Basecbs 14657   +g cplusg 14725   Mndcmnd 16059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1633  ax-4 1646  ax-5 1719  ax-6 1765  ax-7 1808  ax-8 1838  ax-9 1840  ax-10 1855  ax-11 1860  ax-12 1872  ax-13 2020  ax-ext 2374  ax-nul 4513  ax-pow 4560
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1628  df-nf 1632  df-sb 1758  df-eu 2236  df-mo 2237  df-clab 2382  df-cleq 2388  df-clel 2391  df-nfc 2546  df-ne 2593  df-ral 2751  df-rex 2752  df-rab 2755  df-v 3053  df-sbc 3270  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-nul 3729  df-if 3875  df-sn 3962  df-pr 3964  df-op 3968  df-uni 4181  df-br 4385  df-iota 5477  df-fv 5521  df-ov 6221  df-mgm 16012  df-sgrp 16051  df-mnd 16061
This theorem is referenced by:  mndprop  16087  mhmpropd  16112  grppropd  16208  oppgmndb  16530  cmnpropd  16947  ringpropd  17366  prdsringd  17397
  Copyright terms: Public domain W3C validator