MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndideu Structured version   Unicode version

Theorem mndideu 15743
Description: The two-sided identity element of a monoid is unique. Lemma 2.2.1(a) of [Herstein] p. 55. (Contributed by Mario Carneiro, 8-Dec-2014.)
Hypotheses
Ref Expression
mndlem1.b  |-  B  =  ( Base `  G
)
mndlem1.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
mndideu  |-  ( G  e.  Mnd  ->  E! u  e.  B  A. x  e.  B  (
( u  .+  x
)  =  x  /\  ( x  .+  u )  =  x ) )
Distinct variable groups:    x, u, B    u, G, x    u,  .+ , x

Proof of Theorem mndideu
StepHypRef Expression
1 mndlem1.b . . 3  |-  B  =  ( Base `  G
)
2 mndlem1.p . . 3  |-  .+  =  ( +g  `  G )
31, 2mndid 15742 . 2  |-  ( G  e.  Mnd  ->  E. u  e.  B  A. x  e.  B  ( (
u  .+  x )  =  x  /\  (
x  .+  u )  =  x ) )
4 mgmidmo 15738 . . 3  |-  E* u  e.  B  A. x  e.  B  ( (
u  .+  x )  =  x  /\  (
x  .+  u )  =  x )
54a1i 11 . 2  |-  ( G  e.  Mnd  ->  E* u  e.  B  A. x  e.  B  (
( u  .+  x
)  =  x  /\  ( x  .+  u )  =  x ) )
6 reu5 3077 . 2  |-  ( E! u  e.  B  A. x  e.  B  (
( u  .+  x
)  =  x  /\  ( x  .+  u )  =  x )  <->  ( E. u  e.  B  A. x  e.  B  (
( u  .+  x
)  =  x  /\  ( x  .+  u )  =  x )  /\  E* u  e.  B  A. x  e.  B  ( ( u  .+  x )  =  x  /\  ( x  .+  u )  =  x ) ) )
73, 5, 6sylanbrc 664 1  |-  ( G  e.  Mnd  ->  E! u  e.  B  A. x  e.  B  (
( u  .+  x
)  =  x  /\  ( x  .+  u )  =  x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815   E!wreu 2816   E*wrmo 2817   ` cfv 5588  (class class class)co 6285   Basecbs 14493   +g cplusg 14558   Mndcmnd 15729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-nul 4576  ax-pow 4625
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-iota 5551  df-fv 5596  df-ov 6288  df-mnd 15735
This theorem is referenced by:  grpideu  15880  srgideu  16980  rngideu  17029
  Copyright terms: Public domain W3C validator