MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndfo Structured version   Unicode version

Theorem mndfo 15567
Description: The addition operation of a monoid is an onto function (assuming it is a function). (Contributed by Mario Carneiro, 11-Oct-2013.)
Hypotheses
Ref Expression
mndfo.b  |-  B  =  ( Base `  G
)
mndfo.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
mndfo  |-  ( ( G  e.  Mnd  /\  .+  Fn  ( B  X.  B ) )  ->  .+  : ( B  X.  B ) -onto-> B )

Proof of Theorem mndfo
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 461 . . 3  |-  ( ( G  e.  Mnd  /\  .+  Fn  ( B  X.  B ) )  ->  .+  Fn  ( B  X.  B ) )
2 mndfo.b . . . . . . 7  |-  B  =  ( Base `  G
)
3 mndfo.p . . . . . . 7  |-  .+  =  ( +g  `  G )
42, 3mndcl 15542 . . . . . 6  |-  ( ( G  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y
)  e.  B )
543expb 1189 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x  .+  y )  e.  B )
65ralrimivva 2914 . . . 4  |-  ( G  e.  Mnd  ->  A. x  e.  B  A. y  e.  B  ( x  .+  y )  e.  B
)
76adantr 465 . . 3  |-  ( ( G  e.  Mnd  /\  .+  Fn  ( B  X.  B ) )  ->  A. x  e.  B  A. y  e.  B  ( x  .+  y )  e.  B )
8 ffnov 6307 . . 3  |-  (  .+  : ( B  X.  B ) --> B  <->  (  .+  Fn  ( B  X.  B
)  /\  A. x  e.  B  A. y  e.  B  ( x  .+  y )  e.  B
) )
91, 7, 8sylanbrc 664 . 2  |-  ( ( G  e.  Mnd  /\  .+  Fn  ( B  X.  B ) )  ->  .+  : ( B  X.  B ) --> B )
10 simpr 461 . . . . 5  |-  ( ( G  e.  Mnd  /\  x  e.  B )  ->  x  e.  B )
11 eqid 2454 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
122, 11mndidcl 15561 . . . . . 6  |-  ( G  e.  Mnd  ->  ( 0g `  G )  e.  B )
1312adantr 465 . . . . 5  |-  ( ( G  e.  Mnd  /\  x  e.  B )  ->  ( 0g `  G
)  e.  B )
142, 3, 11mndrid 15564 . . . . . 6  |-  ( ( G  e.  Mnd  /\  x  e.  B )  ->  ( x  .+  ( 0g `  G ) )  =  x )
1514eqcomd 2462 . . . . 5  |-  ( ( G  e.  Mnd  /\  x  e.  B )  ->  x  =  ( x 
.+  ( 0g `  G ) ) )
16 rspceov 6240 . . . . 5  |-  ( ( x  e.  B  /\  ( 0g `  G )  e.  B  /\  x  =  ( x  .+  ( 0g `  G ) ) )  ->  E. y  e.  B  E. z  e.  B  x  =  ( y  .+  z
) )
1710, 13, 15, 16syl3anc 1219 . . . 4  |-  ( ( G  e.  Mnd  /\  x  e.  B )  ->  E. y  e.  B  E. z  e.  B  x  =  ( y  .+  z ) )
1817ralrimiva 2830 . . 3  |-  ( G  e.  Mnd  ->  A. x  e.  B  E. y  e.  B  E. z  e.  B  x  =  ( y  .+  z
) )
1918adantr 465 . 2  |-  ( ( G  e.  Mnd  /\  .+  Fn  ( B  X.  B ) )  ->  A. x  e.  B  E. y  e.  B  E. z  e.  B  x  =  ( y  .+  z ) )
20 foov 6350 . 2  |-  (  .+  : ( B  X.  B ) -onto-> B  <->  (  .+  : ( B  X.  B ) --> B  /\  A. x  e.  B  E. y  e.  B  E. z  e.  B  x  =  ( y  .+  z ) ) )
219, 19, 20sylanbrc 664 1  |-  ( ( G  e.  Mnd  /\  .+  Fn  ( B  X.  B ) )  ->  .+  : ( B  X.  B ) -onto-> B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2799   E.wrex 2800    X. cxp 4949    Fn wfn 5524   -->wf 5525   -onto->wfo 5527   ` cfv 5529  (class class class)co 6203   Basecbs 14295   +g cplusg 14360   0gc0g 14500   Mndcmnd 15531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-fo 5535  df-fv 5537  df-riota 6164  df-ov 6206  df-0g 14502  df-mnd 15537
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator