MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mnd12g Structured version   Unicode version

Theorem mnd12g 15440
Description: Commutative/associative law for monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
mndlem1.b  |-  B  =  ( Base `  G
)
mndlem1.p  |-  .+  =  ( +g  `  G )
mnd4g.1  |-  ( ph  ->  G  e.  Mnd )
mnd4g.2  |-  ( ph  ->  X  e.  B )
mnd4g.3  |-  ( ph  ->  Y  e.  B )
mnd4g.4  |-  ( ph  ->  Z  e.  B )
mnd12g.5  |-  ( ph  ->  ( X  .+  Y
)  =  ( Y 
.+  X ) )
Assertion
Ref Expression
mnd12g  |-  ( ph  ->  ( X  .+  ( Y  .+  Z ) )  =  ( Y  .+  ( X  .+  Z ) ) )

Proof of Theorem mnd12g
StepHypRef Expression
1 mnd12g.5 . . 3  |-  ( ph  ->  ( X  .+  Y
)  =  ( Y 
.+  X ) )
21oveq1d 6121 . 2  |-  ( ph  ->  ( ( X  .+  Y )  .+  Z
)  =  ( ( Y  .+  X ) 
.+  Z ) )
3 mnd4g.1 . . 3  |-  ( ph  ->  G  e.  Mnd )
4 mnd4g.2 . . 3  |-  ( ph  ->  X  e.  B )
5 mnd4g.3 . . 3  |-  ( ph  ->  Y  e.  B )
6 mnd4g.4 . . 3  |-  ( ph  ->  Z  e.  B )
7 mndlem1.b . . . 4  |-  B  =  ( Base `  G
)
8 mndlem1.p . . . 4  |-  .+  =  ( +g  `  G )
97, 8mndass 15436 . . 3  |-  ( ( G  e.  Mnd  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .+  Y
)  .+  Z )  =  ( X  .+  ( Y  .+  Z ) ) )
103, 4, 5, 6, 9syl13anc 1220 . 2  |-  ( ph  ->  ( ( X  .+  Y )  .+  Z
)  =  ( X 
.+  ( Y  .+  Z ) ) )
117, 8mndass 15436 . . 3  |-  ( ( G  e.  Mnd  /\  ( Y  e.  B  /\  X  e.  B  /\  Z  e.  B
) )  ->  (
( Y  .+  X
)  .+  Z )  =  ( Y  .+  ( X  .+  Z ) ) )
123, 5, 4, 6, 11syl13anc 1220 . 2  |-  ( ph  ->  ( ( Y  .+  X )  .+  Z
)  =  ( Y 
.+  ( X  .+  Z ) ) )
132, 10, 123eqtr3d 2483 1  |-  ( ph  ->  ( X  .+  ( Y  .+  Z ) )  =  ( Y  .+  ( X  .+  Z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1369    e. wcel 1756   ` cfv 5433  (class class class)co 6106   Basecbs 14189   +g cplusg 14253   Mndcmnd 15424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-nul 4436  ax-pow 4485
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2735  df-rex 2736  df-rab 2739  df-v 2989  df-sbc 3202  df-dif 3346  df-un 3348  df-in 3350  df-ss 3357  df-nul 3653  df-if 3807  df-sn 3893  df-pr 3895  df-op 3899  df-uni 4107  df-br 4308  df-iota 5396  df-fv 5441  df-ov 6109  df-mnd 15430
This theorem is referenced by:  mnd4g  15441  cmn12  16312
  Copyright terms: Public domain W3C validator