MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mnd1 Structured version   Unicode version

Theorem mnd1 16285
Description: The (smallest) structure representing a trivial monoid consists of one element. (Contributed by AV, 28-Apr-2019.) (Proof shortened by AV, 11-Feb-2020.)
Hypothesis
Ref Expression
mnd1.m  |-  M  =  { <. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. }
Assertion
Ref Expression
mnd1  |-  ( I  e.  V  ->  M  e.  Mnd )

Proof of Theorem mnd1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnd1.m . . 3  |-  M  =  { <. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. }
21sgrp1 16242 . 2  |-  ( I  e.  V  ->  M  e. SGrp )
3 df-ov 6281 . . . . 5  |-  ( I { <. <. I ,  I >. ,  I >. } I
)  =  ( {
<. <. I ,  I >. ,  I >. } `  <. I ,  I >. )
4 opex 4655 . . . . . 6  |-  <. I ,  I >.  e.  _V
5 fvsng 6085 . . . . . 6  |-  ( (
<. I ,  I >.  e. 
_V  /\  I  e.  V )  ->  ( { <. <. I ,  I >. ,  I >. } `  <. I ,  I >. )  =  I )
64, 5mpan 668 . . . . 5  |-  ( I  e.  V  ->  ( { <. <. I ,  I >. ,  I >. } `  <. I ,  I >. )  =  I )
73, 6syl5eq 2455 . . . 4  |-  ( I  e.  V  ->  (
I { <. <. I ,  I >. ,  I >. } I )  =  I )
8 oveq2 6286 . . . . . . 7  |-  ( y  =  I  ->  (
I { <. <. I ,  I >. ,  I >. } y )  =  ( I { <. <. I ,  I >. ,  I >. } I ) )
9 id 22 . . . . . . 7  |-  ( y  =  I  ->  y  =  I )
108, 9eqeq12d 2424 . . . . . 6  |-  ( y  =  I  ->  (
( I { <. <.
I ,  I >. ,  I >. } y )  =  y  <->  ( I { <. <. I ,  I >. ,  I >. } I
)  =  I ) )
11 oveq1 6285 . . . . . . 7  |-  ( y  =  I  ->  (
y { <. <. I ,  I >. ,  I >. } I )  =  ( I { <. <. I ,  I >. ,  I >. } I ) )
1211, 9eqeq12d 2424 . . . . . 6  |-  ( y  =  I  ->  (
( y { <. <.
I ,  I >. ,  I >. } I )  =  y  <->  ( I { <. <. I ,  I >. ,  I >. } I
)  =  I ) )
1310, 12anbi12d 709 . . . . 5  |-  ( y  =  I  ->  (
( ( I { <. <. I ,  I >. ,  I >. } y )  =  y  /\  ( y { <. <.
I ,  I >. ,  I >. } I )  =  y )  <->  ( (
I { <. <. I ,  I >. ,  I >. } I )  =  I  /\  ( I { <. <. I ,  I >. ,  I >. } I
)  =  I ) ) )
1413ralsng 4007 . . . 4  |-  ( I  e.  V  ->  ( A. y  e.  { I }  ( ( I { <. <. I ,  I >. ,  I >. } y )  =  y  /\  ( y { <. <.
I ,  I >. ,  I >. } I )  =  y )  <->  ( (
I { <. <. I ,  I >. ,  I >. } I )  =  I  /\  ( I { <. <. I ,  I >. ,  I >. } I
)  =  I ) ) )
157, 7, 14mpbir2and 923 . . 3  |-  ( I  e.  V  ->  A. y  e.  { I }  (
( I { <. <.
I ,  I >. ,  I >. } y )  =  y  /\  (
y { <. <. I ,  I >. ,  I >. } I )  =  y ) )
16 oveq1 6285 . . . . . . 7  |-  ( x  =  I  ->  (
x { <. <. I ,  I >. ,  I >. } y )  =  ( I { <. <. I ,  I >. ,  I >. } y ) )
1716eqeq1d 2404 . . . . . 6  |-  ( x  =  I  ->  (
( x { <. <.
I ,  I >. ,  I >. } y )  =  y  <->  ( I { <. <. I ,  I >. ,  I >. } y )  =  y ) )
18 oveq2 6286 . . . . . . 7  |-  ( x  =  I  ->  (
y { <. <. I ,  I >. ,  I >. } x )  =  ( y { <. <. I ,  I >. ,  I >. } I ) )
1918eqeq1d 2404 . . . . . 6  |-  ( x  =  I  ->  (
( y { <. <.
I ,  I >. ,  I >. } x )  =  y  <->  ( y { <. <. I ,  I >. ,  I >. } I
)  =  y ) )
2017, 19anbi12d 709 . . . . 5  |-  ( x  =  I  ->  (
( ( x { <. <. I ,  I >. ,  I >. } y )  =  y  /\  ( y { <. <.
I ,  I >. ,  I >. } x )  =  y )  <->  ( (
I { <. <. I ,  I >. ,  I >. } y )  =  y  /\  ( y {
<. <. I ,  I >. ,  I >. } I
)  =  y ) ) )
2120ralbidv 2843 . . . 4  |-  ( x  =  I  ->  ( A. y  e.  { I }  ( ( x { <. <. I ,  I >. ,  I >. } y )  =  y  /\  ( y { <. <.
I ,  I >. ,  I >. } x )  =  y )  <->  A. y  e.  { I }  (
( I { <. <.
I ,  I >. ,  I >. } y )  =  y  /\  (
y { <. <. I ,  I >. ,  I >. } I )  =  y ) ) )
2221rexsng 4008 . . 3  |-  ( I  e.  V  ->  ( E. x  e.  { I } A. y  e.  {
I }  ( ( x { <. <. I ,  I >. ,  I >. } y )  =  y  /\  ( y {
<. <. I ,  I >. ,  I >. } x
)  =  y )  <->  A. y  e.  { I }  ( ( I { <. <. I ,  I >. ,  I >. } y )  =  y  /\  ( y { <. <.
I ,  I >. ,  I >. } I )  =  y ) ) )
2315, 22mpbird 232 . 2  |-  ( I  e.  V  ->  E. x  e.  { I } A. y  e.  { I }  ( ( x { <. <. I ,  I >. ,  I >. } y )  =  y  /\  ( y { <. <.
I ,  I >. ,  I >. } x )  =  y ) )
24 snex 4632 . . . 4  |-  { I }  e.  _V
251grpbase 14953 . . . 4  |-  ( { I }  e.  _V  ->  { I }  =  ( Base `  M )
)
2624, 25ax-mp 5 . . 3  |-  { I }  =  ( Base `  M )
27 snex 4632 . . . 4  |-  { <. <.
I ,  I >. ,  I >. }  e.  _V
281grpplusg 14954 . . . 4  |-  ( {
<. <. I ,  I >. ,  I >. }  e.  _V  ->  { <. <. I ,  I >. ,  I >. }  =  ( +g  `  M
) )
2927, 28ax-mp 5 . . 3  |-  { <. <.
I ,  I >. ,  I >. }  =  ( +g  `  M )
3026, 29ismnddef 16246 . 2  |-  ( M  e.  Mnd  <->  ( M  e. SGrp  /\  E. x  e. 
{ I } A. y  e.  { I }  ( ( x { <. <. I ,  I >. ,  I >. } y )  =  y  /\  ( y { <. <.
I ,  I >. ,  I >. } x )  =  y ) ) )
312, 23, 30sylanbrc 662 1  |-  ( I  e.  V  ->  M  e.  Mnd )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1405    e. wcel 1842   A.wral 2754   E.wrex 2755   _Vcvv 3059   {csn 3972   {cpr 3974   <.cop 3978   ` cfv 5569  (class class class)co 6278   ndxcnx 14838   Basecbs 14841   +g cplusg 14909  SGrpcsgrp 16234   Mndcmnd 16243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-1st 6784  df-2nd 6785  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-1o 7167  df-oadd 7171  df-er 7348  df-en 7555  df-dom 7556  df-sdom 7557  df-fin 7558  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-nn 10577  df-2 10635  df-n0 10837  df-z 10906  df-uz 11128  df-fz 11727  df-struct 14843  df-ndx 14844  df-slot 14845  df-base 14846  df-plusg 14922  df-mgm 16196  df-sgrp 16235  df-mnd 16245
This theorem is referenced by:  grp1  16466  ring1  17568
  Copyright terms: Public domain W3C validator