HomeHome Metamath Proof Explorer
Theorem List (p. 58 of 309)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-21328)
  Hilbert Space Explorer  Hilbert Space Explorer
(21329-22851)
  Users' Mathboxes  Users' Mathboxes
(22852-30843)
 

Theorem List for Metamath Proof Explorer - 5701-5800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremf1oiso2 5701* Any one-to-one onto function determines an isomorphism with an induced relation  S. (Contributed by Mario Carneiro, 9-Mar-2013.)
 |-  S  =  { <. x ,  y >.  |  ( ( x  e.  B  /\  y  e.  B )  /\  ( `' H `  x ) R ( `' H `  y ) ) }   =>    |-  ( H : A -1-1-onto-> B  ->  H  Isom  R ,  S  ( A ,  B ) )
 
Theoremf1owe 5702* Well-ordering of isomorphic relations. (Contributed by NM, 4-Mar-1997.)
 |-  R  =  { <. x ,  y >.  |  ( F `  x ) S ( F `  y ) }   =>    |-  ( F : A
 -1-1-onto-> B  ->  ( S  We  B  ->  R  We  A ) )
 
Theoremf1oweALT 5703* Well-ordering of isomorphic relations. (This version is proved directly instead of with the isomorphism predicate.) (Contributed by NM, 4-Mar-1997.) (Proof modification is discouraged.)
 |-  R  =  { <. x ,  y >.  |  ( F `  x ) S ( F `  y ) }   =>    |-  ( F : A
 -1-1-onto-> B  ->  ( S  We  B  ->  R  We  A ) )
 
Theoremweniso 5704 A set-like well-ordering has no nontrivial automorphisms. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Mario Carneiro, 25-Jun-2015.)
 |-  ( ( R  We  A  /\  R Se  A  /\  F  Isom  R ,  R  ( A ,  A ) )  ->  F  =  (  _I  |`  A )
 )
 
Theoremweisoeq 5705 Thus there is at most one isomorphism between any two set-like well-ordered classes. Class version of wemoiso 5707. (Contributed by Mario Carneiro, 25-Jun-2015.)
 |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( F 
 Isom  R ,  S  ( A ,  B ) 
 /\  G  Isom  R ,  S  ( A ,  B ) ) )  ->  F  =  G )
 
Theoremweisoeq2 5706 Thus there is at most one isomorphism between any two set-like well-ordered classes. Class version of wemoiso2 5708. (Contributed by Mario Carneiro, 25-Jun-2015.)
 |-  ( ( ( S  We  B  /\  S Se  B )  /\  ( F 
 Isom  R ,  S  ( A ,  B ) 
 /\  G  Isom  R ,  S  ( A ,  B ) ) )  ->  F  =  G )
 
Theoremwemoiso 5707* Thus there is at most one isomorphism between any two well-ordered sets. TODO: Shorten finnisoeu 7624. (Contributed by Stefan O'Rear, 12-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.)
 |-  ( R  We  A  ->  E* f  f  Isom  R ,  S  ( A ,  B ) )
 
Theoremwemoiso2 5708* Thus there is at most one isomorphism between any two well-ordered sets. (Contributed by Stefan O'Rear, 12-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.)
 |-  ( S  We  B  ->  E* f  f  Isom  R ,  S  ( A ,  B ) )
 
Theoremknatar 5709* The Knaster-Tarski theorem says that every monotone function over a complete lattice has a (least) fixpoint. Here we specialize this theorem to the case when the lattice is the powerset lattice  ~P A. (Contributed by Mario Carneiro, 11-Jun-2015.)
 |-  X  =  |^| { z  e.  ~P A  |  ( F `  z ) 
 C_  z }   =>    |-  ( ( A  e.  V  /\  ( F `  A )  C_  A  /\  A. x  e. 
 ~P  A A. y  e.  ~P  x ( F `
  y )  C_  ( F `  x ) )  ->  ( X  C_  A  /\  ( F `
  X )  =  X ) )
 
2.4.8  Operations
 
Syntaxco 5710 Extend class notation to include the value of an operation  F (such as  +) for two arguments  A and  B. Note that the syntax is simply three class symbols in a row surrounded by parentheses. Since operation values are the only possible class expressions consisting of three class expressions in a row surrounded by parentheses, the syntax is unambiguous. (For an example of how syntax could become ambiguous if we are not careful, see the comment in cneg 8918.)
 class  ( A F B )
 
Syntaxcopab2 5711 Extend class notation to include class abstraction (class builder) of nested ordered pairs.
 class  { <. <. x ,  y >. ,  z >.  |  ph }
 
Syntaxcmpt2 5712 Extend the definition of a class to include maps-to notation for defining an operation via a rule.
 class  ( x  e.  A ,  y  e.  B  |->  C )
 
Definitiondf-ov 5713 Define the value of an operation. Definition of operation value in [Enderton] p. 79. Note that the syntax is simply three class expressions in a row bracketed by parentheses. There are no restrictions of any kind on what those class expressions may be, although only certain kinds of class expressions - a binary operation  F and its arguments  A and  B- will be useful for proving meaningful theorems. For example, if class  F is the operation  + and arguments  A and  B are  3 and  2, the expression  ( 3  +  2 ) can be proved to equal  5 (see 3p2e5 9734). This definition is well-defined, although not very meaningful, when classes  A and/or  B are proper classes (i.e. are not sets); see ovprc1 5738 and ovprc2 5739. On the other hand, we often find uses for this definition when  F is a proper class, such as  +o in oav 6396.  F is normally equal to a class of nested ordered pairs of the form defined by df-oprab 5714. (Contributed by NM, 28-Feb-1995.)
 |-  ( A F B )  =  ( F ` 
 <. A ,  B >. )
 
Definitiondf-oprab 5714* Define the class abstraction (class builder) of a collection of nested ordered pairs (for use in defining operations). This is a special case of Definition 4.16 of [TakeutiZaring] p. 14. Normally  x,  y, and  z are distinct, although the definition doesn't strictly require it. See df-ov 5713 for the value of an operation. The brace notation is called "class abstraction" by Quine; it is also called a "class builder" in the literature. The value of the most common operation class builder is given by ovmpt2 5835. (Contributed by NM, 12-Mar-1995.)
 |- 
 { <. <. x ,  y >. ,  z >.  |  ph }  =  { w  |  E. x E. y E. z ( w  = 
 <. <. x ,  y >. ,  z >.  /\  ph ) }
 
Definitiondf-mpt2 5715* Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from  x ,  y (in  A  X.  B) to  B ( x ,  y )." An extension of df-mpt 3976 for two arguments. (Contributed by NM, 17-Feb-2008.)
 |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <.
 <. x ,  y >. ,  z >.  |  (
 ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
 
Theoremoveq 5716 Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.)
 |-  ( F  =  G  ->  ( A F B )  =  ( A G B ) )
 
Theoremoveq1 5717 Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.)
 |-  ( A  =  B  ->  ( A F C )  =  ( B F C ) )
 
Theoremoveq2 5718 Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.)
 |-  ( A  =  B  ->  ( C F A )  =  ( C F B ) )
 
Theoremoveq12 5719 Equality theorem for operation value. (Contributed by NM, 16-Jul-1995.)
 |-  ( ( A  =  B  /\  C  =  D )  ->  ( A F C )  =  ( B F D ) )
 
Theoremoveq1i 5720 Equality inference for operation value. (Contributed by NM, 28-Feb-1995.)
 |-  A  =  B   =>    |-  ( A F C )  =  ( B F C )
 
Theoremoveq2i 5721 Equality inference for operation value. (Contributed by NM, 28-Feb-1995.)
 |-  A  =  B   =>    |-  ( C F A )  =  ( C F B )
 
Theoremoveq12i 5722 Equality inference for operation value. (Contributed by NM, 28-Feb-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  A  =  B   &    |-  C  =  D   =>    |-  ( A F C )  =  ( B F D )
 
Theoremoveqi 5723 Equality inference for operation value. (Contributed by NM, 24-Nov-2007.)
 |-  A  =  B   =>    |-  ( C A D )  =  ( C B D )
 
Theoremoveq123i 5724 Equality inference for operation value. (Contributed by FL, 11-Jul-2010.)
 |-  A  =  C   &    |-  B  =  D   &    |-  F  =  G   =>    |-  ( A F B )  =  ( C G D )
 
Theoremoveq1d 5725 Equality deduction for operation value. (Contributed by NM, 13-Mar-1995.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( A F C )  =  ( B F C ) )
 
Theoremoveq2d 5726 Equality deduction for operation value. (Contributed by NM, 13-Mar-1995.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( C F A )  =  ( C F B ) )
 
Theoremoveqd 5727 Equality deduction for operation value. (Contributed by NM, 9-Sep-2006.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( C A D )  =  ( C B D ) )
 
Theoremoveq12d 5728 Equality deduction for operation value. (Contributed by NM, 13-Mar-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  ( A F C )  =  ( B F D ) )
 
Theoremoveqan12d 5729 Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ps  ->  C  =  D )   =>    |-  ( ( ph  /\ 
 ps )  ->  ( A F C )  =  ( B F D ) )
 
Theoremoveqan12rd 5730 Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ps  ->  C  =  D )   =>    |-  ( ( ps 
 /\  ph )  ->  ( A F C )  =  ( B F D ) )
 
Theoremoveq123d 5731 Equality deduction for operation value. (Contributed by FL, 22-Dec-2008.)
 |-  ( ph  ->  F  =  G )   &    |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  ( A F C )  =  ( B G D ) )
 
Theoremnfovd 5732 Deduction version of bound-variable hypothesis builder nfov 5733. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/_ x F )   &    |-  ( ph  ->  F/_ x B )   =>    |-  ( ph  ->  F/_ x ( A F B ) )
 
Theoremnfov 5733 Bound-variable hypothesis builder for operation value. (Contributed by NM, 4-May-2004.)
 |-  F/_ x A   &    |-  F/_ x F   &    |-  F/_ x B   =>    |-  F/_ x ( A F B )
 
Theoremoprabid 5734 The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. (Contributed by Mario Carneiro, 20-Mar-2013.)
 |-  ( <. <. x ,  y >. ,  z >.  e.  { <.
 <. x ,  y >. ,  z >.  |  ph }  <->  ph )
 
Theoremovex 5735 The result of an operation is a set. (Contributed by NM, 13-Mar-1995.)
 |-  ( A F B )  e.  _V
 
Theoremovssunirn 5736 The result of an operation value is always a subset of the union of the range. (Contributed by Mario Carneiro, 12-Jan-2017.)
 |-  ( X F Y )  C_  U. ran  F
 
Theoremovprc 5737 The value of an operation when the one of the arguments is a proper class. Note: this theorem is dependent on our particular definitions of operation value, function value, and ordered pair. (Contributed by Mario Carneiro, 26-Apr-2015.)
 |- 
 Rel  dom  F   =>    |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  ( A F B )  =  (/) )
 
Theoremovprc1 5738 The value of an operation when the first argument is a proper class. (Contributed by NM, 16-Jun-2004.)
 |- 
 Rel  dom  F   =>    |-  ( -.  A  e.  _V 
 ->  ( A F B )  =  (/) )
 
Theoremovprc2 5739 The value of an operation when the second argument is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015.)
 |- 
 Rel  dom  F   =>    |-  ( -.  B  e.  _V 
 ->  ( A F B )  =  (/) )
 
Theoremovrcl 5740 Reverse closure for an operation value. (Contributed by Mario Carneiro, 5-May-2015.)
 |- 
 Rel  dom  F   =>    |-  ( C  e.  ( A F B )  ->  ( A  e.  _V  /\  B  e.  _V )
 )
 
Theoremcsbovg 5741 Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
 |-  ( A  e.  D  -> 
 [_ A  /  x ]_ ( B F C )  =  ( [_ A  /  x ]_ B [_ A  /  x ]_ F [_ A  /  x ]_ C ) )
 
Theoremcsbov12g 5742* Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.)
 |-  ( A  e.  D  -> 
 [_ A  /  x ]_ ( B F C )  =  ( [_ A  /  x ]_ B F [_ A  /  x ]_ C ) )
 
Theoremcsbov1g 5743* Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.)
 |-  ( A  e.  D  -> 
 [_ A  /  x ]_ ( B F C )  =  ( [_ A  /  x ]_ B F C ) )
 
Theoremcsbov2g 5744* Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.)
 |-  ( A  e.  D  -> 
 [_ A  /  x ]_ ( B F C )  =  ( B F [_ A  /  x ]_ C ) )
 
Theoremrcla4eov 5745* A frequently used special case of rcla42ev 2829 for operation values. (Contributed by NM, 21-Mar-2007.)
 |-  ( ( C  e.  A  /\  D  e.  B  /\  S  =  ( C F D ) ) 
 ->  E. x  e.  A  E. y  e.  B  S  =  ( x F y ) )
 
Theoremfnotovb 5746 Equivalence of operation value and ordered triple membership, analogous to fnopfvb 5416. (Contributed by NM, 17-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( ( F  Fn  ( A  X.  B ) 
 /\  C  e.  A  /\  D  e.  B ) 
 ->  ( ( C F D )  =  R  <->  <. C ,  D ,  R >.  e.  F ) )
 
Theoremdfoprab2 5747* Class abstraction for operations in terms of class abstraction of ordered pairs. (Contributed by NM, 12-Mar-1995.)
 |- 
 { <. <. x ,  y >. ,  z >.  |  ph }  =  { <. w ,  z >.  |  E. x E. y ( w  = 
 <. x ,  y >.  /\  ph ) }
 
Theoremreloprab 5748* An operation class abstraction is a relation. (Contributed by NM, 16-Jun-2004.)
 |- 
 Rel  { <. <. x ,  y >. ,  z >.  |  ph }
 
Theoremnfoprab1 5749 The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 25-Apr-1995.) (Revised by David Abernethy, 19-Jun-2012.)
 |-  F/_ x { <. <. x ,  y >. ,  z >.  | 
 ph }
 
Theoremnfoprab2 5750 The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 25-Apr-1995.) (Revised by David Abernethy, 30-Jul-2012.)
 |-  F/_ y { <. <. x ,  y >. ,  z >.  | 
 ph }
 
Theoremnfoprab3 5751 The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 22-Aug-2013.)
 |-  F/_ z { <. <. x ,  y >. ,  z >.  | 
 ph }
 
Theoremnfoprab 5752* Bound-variable hypothesis builder for an operation class abstraction. (Contributed by NM, 22-Aug-2013.)
 |- 
 F/ w ph   =>    |-  F/_ w { <. <. x ,  y >. ,  z >.  | 
 ph }
 
Theoremoprabbid 5753* Equivalent wff's yield equal operation class abstractions (deduction rule). (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 24-Jun-2014.)
 |- 
 F/ x ph   &    |-  F/ y ph   &    |-  F/ z ph   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  {
 <. <. x ,  y >. ,  z >.  |  ps }  =  { <. <. x ,  y >. ,  z >.  |  ch } )
 
Theoremoprabbidv 5754* Equivalent wff's yield equal operation class abstractions (deduction rule). (Contributed by NM, 21-Feb-2004.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  {
 <. <. x ,  y >. ,  z >.  |  ps }  =  { <. <. x ,  y >. ,  z >.  |  ch } )
 
Theoremoprabbii 5755* Equivalent wff's yield equal operation class abstractions. (Contributed by NM, 28-May-1995.) (Revised by David Abernethy, 19-Jun-2012.)
 |-  ( ph  <->  ps )   =>    |- 
 { <. <. x ,  y >. ,  z >.  |  ph }  =  { <. <. x ,  y >. ,  z >.  |  ps }
 
Theoremssoprab2 5756 Equivalence of ordered pair abstraction subclass and implication. Compare ssopab2 4183. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
 |-  ( A. x A. y A. z ( ph  ->  ps )  ->  { <. <. x ,  y >. ,  z >.  |  ph }  C_  {
 <. <. x ,  y >. ,  z >.  |  ps } )
 
Theoremssoprab2b 5757 Equivalence of ordered pair abstraction subclass and implication. Compare ssopab2b 4184. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
 |-  ( { <. <. x ,  y >. ,  z >.  | 
 ph }  C_  { <. <. x ,  y >. ,  z >.  |  ps }  <->  A. x A. y A. z ( ph  ->  ps ) )
 
Theoremeqoprab2b 5758 Equivalence of ordered pair abstraction subclass and biconditional. Compare eqopab2b 4187. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  ( { <. <. x ,  y >. ,  z >.  | 
 ph }  =  { <.
 <. x ,  y >. ,  z >.  |  ps }  <->  A. x A. y A. z ( ph  <->  ps ) )
 
Theoremmpt2eq123 5759* An equality theorem for the maps to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) (Revised by Mario Carneiro, 19-Mar-2015.)
 |-  ( ( A  =  D  /\  A. x  e.  A  ( B  =  E  /\  A. y  e.  B  C  =  F ) )  ->  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  D ,  y  e.  E  |->  F ) )
 
Theoremmpt2eq12 5760* An equality theorem for the maps to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
 |-  ( ( A  =  C  /\  B  =  D )  ->  ( x  e.  A ,  y  e.  B  |->  E )  =  ( x  e.  C ,  y  e.  D  |->  E ) )
 
Theoremmpt2eq123dva 5761* An equality deduction for the maps to notation. (Contributed by Mario Carneiro, 26-Jan-2017.)
 |-  ( ph  ->  A  =  D )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  =  E )   &    |-  ( ( ph  /\  ( x  e.  A  /\  y  e.  B )
 )  ->  C  =  F )   =>    |-  ( ph  ->  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  D ,  y  e.  E  |->  F ) )
 
Theoremmpt2eq123dv 5762* An equality deduction for the maps to notation. (Contributed by NM, 12-Sep-2011.)
 |-  ( ph  ->  A  =  D )   &    |-  ( ph  ->  B  =  E )   &    |-  ( ph  ->  C  =  F )   =>    |-  ( ph  ->  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  D ,  y  e.  E  |->  F ) )
 
Theoremmpt2eq123i 5763 An equality inference for the maps to notation. (Contributed by NM, 15-Jul-2013.)
 |-  A  =  D   &    |-  B  =  E   &    |-  C  =  F   =>    |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  D ,  y  e.  E  |->  F )
 
Theoremmpt2eq3dva 5764* Slightly more general equality inference for the maps to notation. (Contributed by NM, 17-Oct-2013.)
 |-  ( ( ph  /\  x  e.  A  /\  y  e.  B )  ->  C  =  D )   =>    |-  ( ph  ->  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D ) )
 
Theoremmpt2eq3ia 5765 An equality inference for the maps to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
 |-  ( ( x  e.  A  /\  y  e.  B )  ->  C  =  D )   =>    |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )
 
Theoremnfmpt21 5766 Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.)
 |-  F/_ x ( x  e.  A ,  y  e.  B  |->  C )
 
Theoremnfmpt22 5767 Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.)
 |-  F/_ y ( x  e.  A ,  y  e.  B  |->  C )
 
Theoremnfmpt2 5768* Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.)
 |-  F/_ z A   &    |-  F/_ z B   &    |-  F/_ z C   =>    |-  F/_ z ( x  e.  A ,  y  e.  B  |->  C )
 
Theoremoprab4 5769* Two ways to state the domain of an operation. (Contributed by FL, 24-Jan-2010.)
 |- 
 { <. <. x ,  y >. ,  z >.  |  (
 <. x ,  y >.  e.  ( A  X.  B )  /\  ph ) }  =  { <. <. x ,  y >. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }
 
Theoremcbvoprab1 5770* Rule used to change first bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 20-Dec-2008.) (Revised by Mario Carneiro, 5-Dec-2016.)
 |- 
 F/ w ph   &    |-  F/ x ps   &    |-  ( x  =  w  ->  (
 ph 
 <->  ps ) )   =>    |-  { <. <. x ,  y >. ,  z >.  | 
 ph }  =  { <.
 <. w ,  y >. ,  z >.  |  ps }
 
Theoremcbvoprab2 5771* Change the second bound variable in an operation abstraction. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 11-Dec-2016.)
 |- 
 F/ w ph   &    |-  F/ y ps   &    |-  ( y  =  w  ->  ( ph  <->  ps ) )   =>    |-  { <. <. x ,  y >. ,  z >.  | 
 ph }  =  { <.
 <. x ,  w >. ,  z >.  |  ps }
 
Theoremcbvoprab12 5772* Rule used to change first two bound variables in an operation abstraction, using implicit substitution. (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |- 
 F/ w ph   &    |-  F/ v ph   &    |-  F/ x ps   &    |-  F/ y ps   &    |-  ( ( x  =  w  /\  y  =  v )  ->  ( ph 
 <->  ps ) )   =>    |-  { <. <. x ,  y >. ,  z >.  | 
 ph }  =  { <.
 <. w ,  v >. ,  z >.  |  ps }
 
Theoremcbvoprab12v 5773* Rule used to change first two bound variables in an operation abstraction, using implicit substitution. (Contributed by NM, 8-Oct-2004.)
 |-  ( ( x  =  w  /\  y  =  v )  ->  ( ph 
 <->  ps ) )   =>    |-  { <. <. x ,  y >. ,  z >.  | 
 ph }  =  { <.
 <. w ,  v >. ,  z >.  |  ps }
 
Theoremcbvoprab3 5774* Rule used to change the third bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 22-Aug-2013.)
 |- 
 F/ w ph   &    |-  F/ z ps   &    |-  ( z  =  w  ->  ( ph  <->  ps ) )   =>    |-  { <. <. x ,  y >. ,  z >.  | 
 ph }  =  { <.
 <. x ,  y >. ,  w >.  |  ps }
 
Theoremcbvoprab3v 5775* Rule used to change the third bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 8-Oct-2004.) (Revised by David Abernethy, 19-Jun-2012.)
 |-  ( z  =  w 
 ->  ( ph  <->  ps ) )   =>    |-  { <. <. x ,  y >. ,  z >.  | 
 ph }  =  { <.
 <. x ,  y >. ,  w >.  |  ps }
 
Theoremcbvmpt2x 5776* Rule to change the bound variable in a maps-to function, using implicit substitution. This version of cbvmpt2 5777 allows  B to be a function of  x. (Contributed by NM, 29-Dec-2014.)
 |-  F/_ z B   &    |-  F/_ x D   &    |-  F/_ z C   &    |-  F/_ w C   &    |-  F/_ x E   &    |-  F/_ y E   &    |-  ( x  =  z 
 ->  B  =  D )   &    |-  ( ( x  =  z  /\  y  =  w )  ->  C  =  E )   =>    |-  ( x  e.  A ,  y  e.  B  |->  C )  =  (
 z  e.  A ,  w  e.  D  |->  E )
 
Theoremcbvmpt2 5777* Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by NM, 17-Dec-2013.)
 |-  F/_ z C   &    |-  F/_ w C   &    |-  F/_ x D   &    |-  F/_ y D   &    |-  ( ( x  =  z  /\  y  =  w )  ->  C  =  D )   =>    |-  ( x  e.  A ,  y  e.  B  |->  C )  =  (
 z  e.  A ,  w  e.  B  |->  D )
 
Theoremcbvmpt2v 5778* Rule to change the bound variable in a maps-to function, using implicit substitution. With a longer proof analogous to cbvmpt 4007, some distinct variable requirements could be eliminated. (Contributed by NM, 11-Jun-2013.)
 |-  ( x  =  z 
 ->  C  =  E )   &    |-  ( y  =  w  ->  E  =  D )   =>    |-  ( x  e.  A ,  y  e.  B  |->  C )  =  (
 z  e.  A ,  w  e.  B  |->  D )
 
Theoremelimdelov 5779 Eliminate a hypothesis which is a predicate expressing membership in the result of an operator (deduction version). See ghomgrplem 23167 for an example of its use. (Contributed by Paul Chapman, 25-Mar-2008.)
 |-  ( ph  ->  C  e.  ( A F B ) )   &    |-  Z  e.  ( X F Y )   =>    |-  if ( ph ,  C ,  Z )  e.  ( if ( ph ,  A ,  X ) F if ( ph ,  B ,  Y ) )
 
Theoremdmoprab 5780* The domain of an operation class abstraction. (Contributed by NM, 17-Mar-1995.) (Revised by David Abernethy, 19-Jun-2012.)
 |- 
 dom  { <. <. x ,  y >. ,  z >.  |  ph }  =  { <. x ,  y >.  |  E. z ph }
 
Theoremdmoprabss 5781* The domain of an operation class abstraction. (Contributed by NM, 24-Aug-1995.)
 |- 
 dom  { <. <. x ,  y >. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }  C_  ( A  X.  B )
 
Theoremrnoprab 5782* The range of an operation class abstraction. (Contributed by NM, 30-Aug-2004.) (Revised by David Abernethy, 19-Apr-2013.)
 |- 
 ran  { <. <. x ,  y >. ,  z >.  |  ph }  =  { z  | 
 E. x E. y ph }
 
Theoremrnoprab2 5783* The range of a restricted operation class abstraction. (Contributed by Scott Fenton, 21-Mar-2012.)
 |- 
 ran  { <. <. x ,  y >. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }  =  { z  |  E. x  e.  A  E. y  e.  B  ph }
 
Theoremreldmoprab 5784* The domain of an operation class abstraction is a relation. (Contributed by NM, 17-Mar-1995.)
 |- 
 Rel  dom  { <. <. x ,  y >. ,  z >.  | 
 ph }
 
Theoremoprabss 5785* Structure of an operation class abstraction. (Contributed by NM, 28-Nov-2006.)
 |- 
 { <. <. x ,  y >. ,  z >.  |  ph } 
 C_  ( ( _V 
 X.  _V )  X.  _V )
 
Theoremeloprabga 5786* The law of concretion for operation class abstraction. Compare elopab 4165. (Contributed by NM, 14-Sep-1999.) (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Revised by Mario Carneiro, 19-Dec-2013.)
 |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ph 
 <->  ps ) )   =>    |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( <. <. A ,  B >. ,  C >.  e.  { <. <. x ,  y >. ,  z >.  |  ph }  <->  ps ) )
 
Theoremeloprabg 5787* The law of concretion for operation class abstraction. Compare elopab 4165. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  (
 y  =  B  ->  ( ps  <->  ch ) )   &    |-  (
 z  =  C  ->  ( ch  <->  th ) )   =>    |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( <. <. A ,  B >. ,  C >.  e.  { <. <. x ,  y >. ,  z >.  |  ph }  <->  th ) )
 
Theoremssoprab2i 5788* Inference of operation class abstraction subclass from implication. (Contributed by NM, 11-Nov-1995.) (Revised by David Abernethy, 19-Jun-2012.)
 |-  ( ph  ->  ps )   =>    |-  { <. <. x ,  y >. ,  z >.  |  ph }  C_  {
 <. <. x ,  y >. ,  z >.  |  ps }
 
Theoremmpt2v 5789* Operation with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.)
 |-  ( x  e.  _V ,  y  e.  _V  |->  C )  =  { <.
 <. x ,  y >. ,  z >.  |  z  =  C }
 
Theoremmpt2mptx 5790* Express a two-argument function as a one-argument function, or vice-versa. In this version 
B ( x ) is not assumed to be constant w.r.t  x. (Contributed by Mario Carneiro, 29-Dec-2014.)
 |-  ( z  =  <. x ,  y >.  ->  C  =  D )   =>    |-  ( z  e.  U_ x  e.  A  ( { x }  X.  B )  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )
 
Theoremmpt2mpt 5791* Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 17-Dec-2013.) (Revised by Mario Carneiro, 29-Dec-2014.)
 |-  ( z  =  <. x ,  y >.  ->  C  =  D )   =>    |-  ( z  e.  ( A  X.  B )  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )
 
Theoremresoprab 5792* Restriction of an operation class abstraction. (Contributed by NM, 10-Feb-2007.)
 |-  ( { <. <. x ,  y >. ,  z >.  | 
 ph }  |`  ( A  X.  B ) )  =  { <. <. x ,  y >. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }
 
Theoremresoprab2 5793* Restriction of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( ( C  C_  A  /\  D  C_  B )  ->  ( { <. <. x ,  y >. ,  z >.  |  (
 ( x  e.  A  /\  y  e.  B )  /\  ph ) }  |`  ( C  X.  D ) )  =  { <. <. x ,  y >. ,  z >.  |  ( ( x  e.  C  /\  y  e.  D )  /\  ph ) } )
 
Theoremresmpt2 5794* Restriction of the mapping operation. (Contributed by Mario Carneiro, 17-Dec-2013.)
 |-  ( ( C  C_  A  /\  D  C_  B )  ->  ( ( x  e.  A ,  y  e.  B  |->  E )  |`  ( C  X.  D ) )  =  ( x  e.  C ,  y  e.  D  |->  E ) )
 
Theoremfunoprabg 5795* "At most one" is a sufficient condition for an operation class abstraction to be a function. (Contributed by NM, 28-Aug-2007.)
 |-  ( A. x A. y E* z ph  ->  Fun  { <. <. x ,  y >. ,  z >.  |  ph } )
 
Theoremfunoprab 5796* "At most one" is a sufficient condition for an operation class abstraction to be a function. (Contributed by NM, 17-Mar-1995.)
 |- 
 E* z ph   =>    |- 
 Fun  { <. <. x ,  y >. ,  z >.  |  ph }
 
Theoremfnoprabg 5797* Functionality and domain of an operation class abstraction. (Contributed by NM, 28-Aug-2007.)
 |-  ( A. x A. y ( ph  ->  E! z ps )  ->  { <. <. x ,  y >. ,  z >.  |  (
 ph  /\  ps ) }  Fn  { <. x ,  y >.  |  ph } )
 
Theoremmpt2fun 5798* The maps-to notation for an operation is always a function. (Contributed by Scott Fenton, 21-Mar-2012.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  Fun  F
 
Theoremfnoprab 5799* Functionality and domain of an operation class abstraction. (Contributed by NM, 15-May-1995.)
 |-  ( ph  ->  E! z ps )   =>    |- 
 { <. <. x ,  y >. ,  z >.  |  (
 ph  /\  ps ) }  Fn  { <. x ,  y >.  |  ph }
 
Theoremffnov 5800* An operation maps to a class to which all values belong. (Contributed by NM, 7-Feb-2004.)
 |-  ( F : ( A  X.  B ) --> C  <->  ( F  Fn  ( A  X.  B ) 
 /\  A. x  e.  A  A. y  e.  B  ( x F y )  e.  C ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30843
  Copyright terms: Public domain < Previous  Next >