Home Metamath Proof ExplorerTheorem List (p. 383 of 402) < Previous  Next > Browser slow? Try the Unicode version. Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

 Color key: Metamath Proof Explorer (1-26506) Hilbert Space Explorer (26507-28029) Users' Mathboxes (28030-40127)

Theorem List for Metamath Proof Explorer - 38201-38300   *Has distinct variable group(s)
TypeLabelDescription
Statement

Definitiondf-voln 38201 Define the Lebesgue measure for the space of multidimensional real numbers. The cardinality of is the dimension of the space modeled. Definition 115C of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
voln voln* CaraGenvoln*

Theoremvonval 38202 Value of the Lebesgue measure for a given finite dimension. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
voln voln* CaraGenvoln*

Theoremovnval 38203* Value of the Lebesgue outer measure for a given finite dimension. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
voln* inf Σ^

Theoremvolico 38204 The measure of left closed, right open interval. (Contributed by Glauco Siliprandi, 11-Oct-2020.)

Theoremelhoi 38205* Membership in a multidimensional half-open interval. (Contributed by Glauco Siliprandi, 11-Oct-2020.)

Theoremicoresmbl 38206 A closed-below, open-above real interval is measurable, when the bounds are real. (Contributed by Glauco Siliprandi, 11-Oct-2020.)

Theoremhoissre 38207* The projection of a half-open interval onto a single dimension is a subset of . (Contributed by Glauco Siliprandi, 11-Oct-2020.)

Theoremovnval2 38208* Value of the Lebesgue outer measure of a subset of the space of multidimensional real numbers. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Σ^        voln* inf

Theoremvolicorecl 38209 The Lebesgue measure of a left-closed, right-open interval with real bounds, is real. (Contributed by Glauco Siliprandi, 11-Oct-2020.)

Theoremhoiprodcl 38210* The pre-measure of half-open intervals is a nonnegative real. (Contributed by Glauco Siliprandi, 11-Oct-2020.)

Theoremhoicvr 38211* is a countable set of half-open intervals that covers the whole multidimensional reals. See Definition 1135 (b) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 11-Oct-2020.)

Theoremhoissrrn 38212* A half-open interval is a subset of R^n . (Contributed by Glauco Siliprandi, 11-Oct-2020.)

Theoremovn0val 38213 The Lebesgue outer measure (for the zero dimensional space of reals) of every subset is zero. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
voln*

Theoremovnn0val 38214* The value of a (multidimensional) Lebesgue outer measure, defined on a nonzero-dimensional space of reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Σ^        voln* inf

Theoremovnval2b 38215* Value of the Lebesgue outer measure of a subset of the space of multidimensional real numbers. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Σ^        voln* inf

Theoremvolicorescl 38216 The Lebesgue measure of a left-closed, right-open interval with real bounds, is real. (Contributed by Glauco Siliprandi, 11-Oct-2020.)

Theoremovnprodcl 38217* The product used in the definition of the outer Lebesgue measure in R^n is a nonnegative real. (Contributed by Glauco Siliprandi, 11-Oct-2020.)

Theoremhoiprodcl2 38218* The pre-measure of half-open intervals is a nonnegative real. (Contributed by Glauco Siliprandi, 11-Oct-2020.)

Theoremhoicvrrex 38219* Any subset of the multidimensional reals can be covered by a countable set of half-open intervals, see Definition 115A (b) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Σ^

Theoremovnsupge0 38220* The set used in the definition of the Lebesgue outer measure is a subset of the nonnegative extended reals. This is a substep for (a)(i) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Σ^

Theoremovnlecvr 38221* Given a subset of multidimensional reals and a set of half-open intervals that covers it, the Lebesgue outer measure of the set is bounded by the generalized sum of the pre-measure of the half-open intervals. The statement would also be true with the empty set, but covers are not used for the zero-dimensional case. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
voln* Σ^

Theoremovnpnfelsup 38222* is an element of the set used in the definition of the Lebesgue outer measure. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Σ^

Theoremovnsslelem 38223* The (multidimensional, nonzero-dimensional) Lebesgue outer measure of a subset is less than the L.o.m. of the whole set. This is step (iii) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Σ^        Σ^        voln* voln*

Theoremovnssle 38224 The (multidimensional) Lebesgue outer measure of a subset is less than the L.o.m. of the whole set. This is step (iii) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
voln* voln*

Theoremovnlerp 38225* The Lebesgue outer measure of a subset of multidimensional real numbers can always be approximated by the total outer measure of a cover of half-open (multidimensional) intervals. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Σ^        voln*

Theoremovnf 38226 The Lebesgue outer measure is a function that maps sets to nonnegative extended reals. This is step (a)(i) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
voln*

Theoremovncvrrp 38227* The Lebesgue outer measure of a subset of multidimensional real numbers can always be approximated by the total outer measure of a cover of half-open (multidimensional) intervals. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Σ^ voln*

Theoremovn0lem 38228* For any finite dimension, the Lebesgue outer measure of the empty set is zero. This is step (a)(ii) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Σ^        inf               inf

Theoremovn0 38229 For any finite dimension, the Lebesgue outer measure of the empty set is zero. This is step (ii) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
voln*

Theoremovncl 38230 The Lebesgue outer measure of a set is a nonnegative extended real. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
voln*

Theoremovn02 38231 For the zero-dimensional space, voln* assigns zero to every subset. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
voln*

Theoremovnxrcl 38232 The Lebesgue outer measure of a set is an extended real. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
voln*

Theoremovnsubaddlem1 38233* The Lebesgue outer measure is subadditive. Proposition 115D (a)(iv) of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Σ^                      Σ^ voln*                            voln* Σ^ voln*

Theoremovnsubaddlem2 38234* voln* is subadditive. Proposition 115D (a)(iv) of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Σ^                      Σ^ voln*       voln* Σ^ voln*

Theoremovnsubadd 38235* voln* is subadditive. Proposition 115D (a)(iv) of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 11-Oct-2020.)
voln* Σ^ voln*

Theoremovnome 38236 voln* is an outer measure on the space of multidimensional real numbers with dimension equal to the cardinality of the finite set . Proposition 115D (a) of [Fremlin1] p. 30 . (Contributed by Glauco Siliprandi, 11-Oct-2020.)
voln* OutMeas

Theoremvonmea 38237 voln is a measure on the space of multidimensional real numbers with dimension equal to the cardinality of the finite set . Comments in Definition 115E of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 11-Oct-2020.)
voln Meas

Theoremvolicon0 38238 The measure of a nonempty left-closed, right-open interval. (Contributed by Glauco Siliprandi, 21-Nov-2020.)

Theoremhsphoif 38239* is a function (that returns the representation of the right side of a half-open interval intersected with a half-space). Step (b) in Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)

Theoremhoidmvval 38240* The dimensional volume of a multidimensional half-open interval. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)

Theoremhoissrrn2 38241* A half-open interval is a subset of R^n . (Contributed by Glauco Siliprandi, 21-Nov-2020.)

Theoremhsphoival 38242* is a function (that returns the representation of the right side of a half-open interval intersected with a half-space). Step (b) in Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)

Theoremhoiprodcl3 38243* The pre-measure of half-open intervals is a nonnegative real. (Contributed by Glauco Siliprandi, 21-Nov-2020.)

Theoremvolicore 38244 The Lebesgue measure of a left-closed right-open interval is a real number. (Contributed by Glauco Siliprandi, 21-Nov-2020.)

Theoremhoidmvcl 38245* The dimensional volume of a multidimensional half-open interval is a nonnegative real. (Contributed by Glauco Siliprandi, 21-Nov-2020.)

Theoremhoidmv0val 38246* The dimensional volume of a 0-dimensional half-open interval. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)

Theoremhoidmvn0val 38247* The dimensional volume of a non 0-dimensional half-open interval. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)

Theoremhsphoidmvle2 38248* The dimensional volume of a half-open interval intersected with a two half-spaces. Used in the last inequality of step (c) of Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)

Theoremhsphoidmvle 38249* The dimensional volume of a half-open interval intersected with a half-space, is less than or equal to the dimensional volume of the original half-open interval. Used in the last inequality of step (e) of Lemma 115B of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 21-Nov-2020.)

Theoremhoidmvval0 38250* The dimensional volume of the (half-open interval) empty set. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)

Theoremhoiprodp1 38251* The dimensional volume of a half-open interval with dimension . Used in the first equality of step (e) of Lemma 115B of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 21-Nov-2020.)

Theoremsge0hsphoire 38252* If the generalized sum of dimensional volumes of n-dimensional half-open intervals is finite, then the sum stays finite if every half-open interval is intersected with a half-space. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Σ^                      Σ^

Theoremhoidmvval0b 38253* The dimensional volume of the (half-open interval) empty set. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)

Theoremhoidmv1lelem1 38254* The supremum of belongs to . This is the last part of step (a) and the whole step (b) in the proof of Lemma 114B of [Fremlin1] p. 23. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Σ^        Σ^

Theoremhoidmv1lelem2 38255* This is the contradiction proven in step (c) in the proof of Lemma 114B of [Fremlin1] p. 23. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Σ^        Σ^

Theoremhoidmv1lelem3 38256* The dimensional volume of a 1-dimensional half-open interval is less than or equal the generalized sum of the dimensional volumes of countable half-open intervals that cover it. This is the non-empty, finite generalized sum, sub case in Lemma 114B of [Fremlin1] p. 23. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Σ^        Σ^               Σ^

Theoremhoidmv1le 38257* The dimensional volume of a 1-dimensional half-open interval is less than or equal to the generalized sum of the dimensional volumes of countable half-open intervals that cover it. This is one of the two base cases of the induction of Lemma 115B of [Fremlin1] p. 29 (the other base case is the 0-dimensional case). This proof of the 1-dimensional case is given in Lemma 114B of [Fremlin1] p. 23. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Σ^

Theoremhoidmvlelem1 38258* The supremum of belongs to . Step (c) in the proof of Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Σ^                             Σ^

Theoremhoidmvlelem2 38259* This is the contradiction proven in step (d) in the proof of Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Σ^                             Σ^                                                         inf

Theoremhoidmvlelem3 38260* This is the contradiction proven in step (d) in the proof of Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Σ^                             Σ^                             Σ^

Theoremhoidmvlelem4 38261* The dimensional volume of a multidimensional half-open interval is less than or equal the generalized sum of the dimensional volumes of countable half-open intervals that cover it. Induction step of Lemma 115B of [Fremlin1] p. 29, case nonempty interval and dimension of the space greater than . (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Σ^                             Σ^               Σ^               Σ^

Theoremhoidmvlelem5 38262* The dimensional volume of a multidimensional half-open interval is less than or equal the generalized sum of the dimensional volumes of countable half-open intervals that cover it. Induction step of Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Σ^                      Σ^

Theoremhoidmvle 38263* The dimensional volume of a n-dimensional half-open interval is less than or equal the generalized sum of the dimensional volumes of countable half-open intervals that cover it. Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Σ^

Theoremovnhoilem1 38264* The Lebesgue outer measure of a multidimensional half-open interval is less than or equal to the product of its length in each dimension. First part of the proof of Proposition 115D (b) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Σ^               voln*

Theoremovnhoilem2 38265* The Lebesgue outer measure of a multidimensional half-open interval is less than or equal to the product of its length in each dimension. Second part of the proof of Proposition 115D (b) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Σ^                      voln*

Theoremovnhoi 38266* The Lebesgue outer measure of a multidimensional half-open interval is its dimensional volume (the product of its length in each dimension, when the dimension is nonzero). Proposition 115D (b) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
voln*

21.31  Mathbox for Saveliy Skresanov

21.31.1  Ceva's theorem

Theoremsigarval 38267* Define the signed area by treating complex numbers as vectors with two components. (Contributed by Saveliy Skresanov, 19-Sep-2017.)

Theoremsigarim 38268* Signed area takes value in reals. (Contributed by Saveliy Skresanov, 19-Sep-2017.)

Theoremsigarac 38269* Signed area is anticommutative. (Contributed by Saveliy Skresanov, 19-Sep-2017.)

Theoremsigaraf 38270* Signed area is additive by the first argument. (Contributed by Saveliy Skresanov, 19-Sep-2017.)

Theoremsigarmf 38271* Signed area is additive (with respect to subtraction) by the first argument. (Contributed by Saveliy Skresanov, 19-Sep-2017.)

Theoremsigaras 38272* Signed area is additive by the second argument. (Contributed by Saveliy Skresanov, 19-Sep-2017.)

Theoremsigarms 38273* Signed area is additive (with respect to subtraction) by the second argument. (Contributed by Saveliy Skresanov, 19-Sep-2017.)

Theoremsigarls 38274* Signed area is linear by the second argument. (Contributed by Saveliy Skresanov, 19-Sep-2017.)

Theoremsigarid 38275* Signed area of a flat parallelogram is zero. (Contributed by Saveliy Skresanov, 20-Sep-2017.)

Theoremsigarexp 38276* Expand the signed area formula by linearity. (Contributed by Saveliy Skresanov, 20-Sep-2017.)

Theoremsigarperm 38277* Signed area acts as a double area of a triangle . Here we prove that cyclically permuting the vertices doesn't change the area. (Contributed by Saveliy Skresanov, 20-Sep-2017.)

Theoremsigardiv 38278* If signed area between vectors and is zero, then those vectors lie on the same line. (Contributed by Saveliy Skresanov, 22-Sep-2017.)

Theoremsigarimcd 38279* Signed area takes value in complex numbers. Deduction version. (Contributed by Saveliy Skresanov, 23-Sep-2017.)

Theoremsigariz 38280* If signed area is zero, the signed area with swapped arguments is also zero. Deduction version. (Contributed by Saveliy Skresanov, 23-Sep-2017.)

Theoremsigarcol 38281* Given three points , and such that , the point lies on the line going through and iff the corresponding signed area is zero. That justifies the usage of signed area as a collinearity indicator. (Contributed by Saveliy Skresanov, 22-Sep-2017.)

Theoremsharhght 38282* Let be a triangle, and let lie on the line . Then (doubled) areas of triangles and relate as lengths of corresponding bases and . (Contributed by Saveliy Skresanov, 23-Sep-2017.)

Theoremsigaradd 38283* Subtracting (double) area of from yields the (double) area of . (Contributed by Saveliy Skresanov, 23-Sep-2017.)

Theoremcevathlem1 38284 Ceva's theorem first lemma. Multiplies three identities and divides by the common factors. (Contributed by Saveliy Skresanov, 24-Sep-2017.)

Theoremcevathlem2 38285* Ceva's theorem second lemma. Relate (doubled) areas of triangles and with of segments and . (Contributed by Saveliy Skresanov, 24-Sep-2017.)

Theoremcevath 38286* Ceva's theorem. Let be a triangle and let points , and lie on sides , , correspondingly. Suppose that cevians , and intersect at one point . Then triangle's sides are partitioned into segments and their lengths satisfy a certain identity. Here we obtain a bit stronger version by using complex numbers themselves instead of their absolute values.

The proof goes by applying cevathlem2 38285 three times and then using cevathlem1 38284 to multiply obtained identities and prove the theorem.

In the theorem statement we are using function as a collinearity indicator. For justification of that use, see sigarcol 38281. This is Metamath 100 proof #61. (Contributed by Saveliy Skresanov, 24-Sep-2017.)

21.32  Mathbox for Jarvin Udandy

TheoremhirstL-ax3 38287 The third axiom of a system called "L" but proven to be a theorem since set.mm uses a different third axiom. This is named hirst after Holly P. Hirst and Jeffry L. Hirst. Axiom A3 of [Mendelson] p. 35. (Contributed by Jarvin Udandy, 7-Feb-2015.) (Proof modification is discouraged.)

Theoremax3h 38288 Recovery of ax-3 8 from hirstL-ax3 38287. (Contributed by Jarvin Udandy, 3-Jul-2015.) (Proof modification is discouraged.) (New usage is discouraged.)

Theoremaibandbiaiffaiffb 38289 A closed form showing (a implies b and b implies a) same-as (a same-as b). (Contributed by Jarvin Udandy, 3-Sep-2016.)

Theoremaibandbiaiaiffb 38290 A closed form showing (a implies b and b implies a) implies (a same-as b). (Contributed by Jarvin Udandy, 3-Sep-2016.)

Theoremnotatnand 38291 Do not use. Use intnanr instead. Given not a, there exists a proof for not (a and b). (Contributed by Jarvin Udandy, 31-Aug-2016.)

Theoremaistia 38292 Given a is equivalent to , there exists a proof for a. (Contributed by Jarvin Udandy, 30-Aug-2016.)

Theoremaisfina 38293 Given a is equivalent to , there exists a proof for not a. (Contributed by Jarvin Udandy, 30-Aug-2016.)

Theorembothtbothsame 38294 Given both a, b are equivalent to , there exists a proof for a is the same as b. (Contributed by Jarvin Udandy, 31-Aug-2016.)

Theorembothfbothsame 38295 Given both a, b are equivalent to , there exists a proof for a is the same as b. (Contributed by Jarvin Udandy, 31-Aug-2016.)

Theoremaiffbbtat 38296 Given a is equivalent to b, b is equivalent to there exists a proof for a is equivalent to T. (Contributed by Jarvin Udandy, 29-Aug-2016.)

Theoremaisbbisfaisf 38297 Given a is equivalent to b, b is equivalent to there exists a proof for a is equivalent to F. (Contributed by Jarvin Udandy, 30-Aug-2016.)

Theoremaxorbtnotaiffb 38298 Given a is exclusive to b, there exists a proof for (not (a if-and-only-if b)); df-xor 1401 is a closed form of this. (Contributed by Jarvin Udandy, 7-Sep-2016.)

Theoremaiffnbandciffatnotciffb 38299 Given a is equivalent to (not b), c is equivalent to a, there exists a proof for ( not ( c iff b ) ). (Contributed by Jarvin Udandy, 7-Sep-2016.)

Theoremaxorbciffatcxorb 38300 Given a is equivalent to (not b), c is equivalent to a. there exists a proof for ( c xor b ) . (Contributed by Jarvin Udandy, 7-Sep-2016.)

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40127
 Copyright terms: Public domain < Previous  Next >