HomeHome Metamath Proof Explorer
Theorem List (p. 381 of 386)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-26036)
  Hilbert Space Explorer  Hilbert Space Explorer
(26037-27561)
  Users' Mathboxes  Users' Mathboxes
(27562-38552)
 

Theorem List for Metamath Proof Explorer - 38001-38100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremhdmaprnlem7N 38001 Part of proof of part 12 in [Baer] p. 49 line 19, s-St  e. G(u'+s) = P*. (Contributed by NM, 27-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  L  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  s  e.  ( D  \  { Q } ) )   &    |-  ( ph  ->  v  e.  V )   &    |-  ( ph  ->  ( M `  ( N `
  { v }
 ) )  =  ( L `  { s } ) )   &    |-  ( ph  ->  u  e.  V )   &    |-  ( ph  ->  -.  u  e.  ( N `  { v } ) )   &    |-  D  =  ( Base `  C )   &    |-  Q  =  ( 0g `  C )   &    |- 
 .0.  =  ( 0g `  U )   &    |-  .+b  =  ( +g  `  C )   &    |-  ( ph  ->  t  e.  (
 ( N `  { v } )  \  {  .0.  } ) )   &    |-  .+  =  ( +g  `  U )   &    |-  ( ph  ->  ( L `  { ( ( S `
  u )  .+b  s ) } )  =  ( M `  ( N `  { ( u 
 .+  t ) }
 ) ) )   =>    |-  ( ph  ->  ( s ( -g `  C ) ( S `  t ) )  e.  ( L `  { (
 ( S `  u )  .+b  s ) }
 ) )
 
Theoremhdmaprnlem8N 38002 Part of proof of part 12 in [Baer] p. 49 line 19, s-St  e. (Ft)* = T*. (Contributed by NM, 27-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  L  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  s  e.  ( D  \  { Q } ) )   &    |-  ( ph  ->  v  e.  V )   &    |-  ( ph  ->  ( M `  ( N `
  { v }
 ) )  =  ( L `  { s } ) )   &    |-  ( ph  ->  u  e.  V )   &    |-  ( ph  ->  -.  u  e.  ( N `  { v } ) )   &    |-  D  =  ( Base `  C )   &    |-  Q  =  ( 0g `  C )   &    |- 
 .0.  =  ( 0g `  U )   &    |-  .+b  =  ( +g  `  C )   &    |-  ( ph  ->  t  e.  (
 ( N `  { v } )  \  {  .0.  } ) )   &    |-  .+  =  ( +g  `  U )   &    |-  ( ph  ->  ( L `  { ( ( S `
  u )  .+b  s ) } )  =  ( M `  ( N `  { ( u 
 .+  t ) }
 ) ) )   =>    |-  ( ph  ->  ( s ( -g `  C ) ( S `  t ) )  e.  ( M `  ( N `  { t }
 ) ) )
 
Theoremhdmaprnlem9N 38003 Part of proof of part 12 in [Baer] p. 49 line 21, s=S(t). TODO: we seem to be going back and forth with mapd11 37782 and mapdcnv11N 37802. Use better hypotheses and/or theorems? (Contributed by NM, 27-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  L  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  s  e.  ( D  \  { Q } ) )   &    |-  ( ph  ->  v  e.  V )   &    |-  ( ph  ->  ( M `  ( N `
  { v }
 ) )  =  ( L `  { s } ) )   &    |-  ( ph  ->  u  e.  V )   &    |-  ( ph  ->  -.  u  e.  ( N `  { v } ) )   &    |-  D  =  ( Base `  C )   &    |-  Q  =  ( 0g `  C )   &    |- 
 .0.  =  ( 0g `  U )   &    |-  .+b  =  ( +g  `  C )   &    |-  ( ph  ->  t  e.  (
 ( N `  { v } )  \  {  .0.  } ) )   &    |-  .+  =  ( +g  `  U )   &    |-  ( ph  ->  ( L `  { ( ( S `
  u )  .+b  s ) } )  =  ( M `  ( N `  { ( u 
 .+  t ) }
 ) ) )   =>    |-  ( ph  ->  s  =  ( S `  t ) )
 
Theoremhdmaprnlem3eN 38004* Lemma for hdmaprnN 38010. (Contributed by NM, 29-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  L  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  s  e.  ( D  \  { Q } ) )   &    |-  ( ph  ->  v  e.  V )   &    |-  ( ph  ->  ( M `  ( N `
  { v }
 ) )  =  ( L `  { s } ) )   &    |-  ( ph  ->  u  e.  V )   &    |-  ( ph  ->  -.  u  e.  ( N `  { v } ) )   &    |-  D  =  ( Base `  C )   &    |-  Q  =  ( 0g `  C )   &    |- 
 .0.  =  ( 0g `  U )   &    |-  .+b  =  ( +g  `  C )   &    |-  .+  =  ( +g  `  U )   =>    |-  ( ph  ->  E. t  e.  (
 ( N `  { v } )  \  {  .0.  } ) ( L `  { ( ( S `
  u )  .+b  s ) } )  =  ( M `  ( N `  { ( u 
 .+  t ) }
 ) ) )
 
Theoremhdmaprnlem10N 38005* Lemma for hdmaprnN 38010. Show  s is in the range of  S. (Contributed by NM, 29-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  L  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  s  e.  ( D  \  { Q } ) )   &    |-  ( ph  ->  v  e.  V )   &    |-  ( ph  ->  ( M `  ( N `
  { v }
 ) )  =  ( L `  { s } ) )   &    |-  ( ph  ->  u  e.  V )   &    |-  ( ph  ->  -.  u  e.  ( N `  { v } ) )   &    |-  D  =  ( Base `  C )   &    |-  Q  =  ( 0g `  C )   &    |- 
 .0.  =  ( 0g `  U )   &    |-  .+b  =  ( +g  `  C )   &    |-  .+  =  ( +g  `  U )   =>    |-  ( ph  ->  E. t  e.  V  ( S `  t )  =  s )
 
Theoremhdmaprnlem11N 38006* Lemma for hdmaprnN 38010. Show  s is in the range of  S. (Contributed by NM, 29-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  L  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  s  e.  ( D  \  { Q } ) )   &    |-  ( ph  ->  v  e.  V )   &    |-  ( ph  ->  ( M `  ( N `
  { v }
 ) )  =  ( L `  { s } ) )   &    |-  ( ph  ->  u  e.  V )   &    |-  ( ph  ->  -.  u  e.  ( N `  { v } ) )   &    |-  D  =  ( Base `  C )   &    |-  Q  =  ( 0g `  C )   &    |- 
 .0.  =  ( 0g `  U )   &    |-  .+b  =  ( +g  `  C )   &    |-  .+  =  ( +g  `  U )   =>    |-  ( ph  ->  s  e.  ran  S )
 
Theoremhdmaprnlem15N 38007* Lemma for hdmaprnN 38010. Eliminate  u. (Contributed by NM, 30-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  .0.  =  ( 0g `  C )   &    |-  L  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  s  e.  ( D  \  {  .0.  } ) )   &    |-  ( ph  ->  v  e.  V )   &    |-  ( ph  ->  ( M `  ( N `  { v } )
 )  =  ( L `
  { s }
 ) )   =>    |-  ( ph  ->  s  e.  ran  S )
 
Theoremhdmaprnlem16N 38008 Lemma for hdmaprnN 38010. Eliminate  v. (Contributed by NM, 30-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  .0.  =  ( 0g `  C )   &    |-  L  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  s  e.  ( D  \  {  .0.  } ) )   =>    |-  ( ph  ->  s  e.  ran  S )
 
Theoremhdmaprnlem17N 38009 Lemma for hdmaprnN 38010. Include zero. (Contributed by NM, 30-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  .0.  =  ( 0g `  C )   &    |-  L  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  s  e.  D )   =>    |-  ( ph  ->  s  e.  ran  S )
 
TheoremhdmaprnN 38010 Part of proof of part 12 in [Baer] p. 49 line 21, As=B. (Contributed by NM, 30-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  ran  S  =  D )
 
Theoremhdmapf1oN 38011 Part 12 in [Baer] p. 49. The map from vectors to functionals with closed kernels maps one-to-one onto. Combined with hdmapadd 37989, this shows the map is an automorphism from the additive group of vectors to the additive group of functionals with closed kernels. (Contributed by NM, 30-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  S : V -1-1-onto-> D )
 
Theoremhdmap14lem1a 38012 Prior to part 14 in [Baer] p. 49, line 25. (Contributed by NM, 31-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .xb  =  ( .s `  C )   &    |-  L  =  ( LSpan `  C )   &    |-  P  =  (Scalar `  C )   &    |-  A  =  ( Base `  P )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  F  e.  B )   &    |- 
 .0.  =  ( 0g `  R )   &    |-  ( ph  ->  F  =/=  .0.  )   =>    |-  ( ph  ->  ( L `  { ( S `  X ) }
 )  =  ( L `
  { ( S `
  ( F  .x.  X ) ) } )
 )
 
Theoremhdmap14lem2a 38013* Prior to part 14 in [Baer] p. 49, line 25. TODO: fix to include  F  =  .0. so it can be used in hdmap14lem10 38023. (Contributed by NM, 31-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .xb  =  ( .s `  C )   &    |-  L  =  ( LSpan `  C )   &    |-  P  =  (Scalar `  C )   &    |-  A  =  ( Base `  P )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  F  e.  B )   =>    |-  ( ph  ->  E. g  e.  A  ( S `  ( F  .x.  X ) )  =  ( g 
 .xb  ( S `  X ) ) )
 
Theoremhdmap14lem1 38014 Prior to part 14 in [Baer] p. 49, line 25. (Contributed by NM, 31-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  (
 Base `  R )   &    |-  Z  =  ( 0g `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .xb  =  ( .s `  C )   &    |-  L  =  (
 LSpan `  C )   &    |-  P  =  (Scalar `  C )   &    |-  A  =  ( Base `  P )   &    |-  Q  =  ( 0g `  P )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  F  e.  ( B  \  { Z } ) )   =>    |-  ( ph  ->  ( L ` 
 { ( S `  X ) } )  =  ( L `  { ( S `  ( F  .x.  X ) ) } )
 )
 
Theoremhdmap14lem2N 38015* Prior to part 14 in [Baer] p. 49, line 25. TODO: fix to include  F  =  Z so it can be used in hdmap14lem10 38023. (Contributed by NM, 31-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  (
 Base `  R )   &    |-  Z  =  ( 0g `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .xb  =  ( .s `  C )   &    |-  L  =  (
 LSpan `  C )   &    |-  P  =  (Scalar `  C )   &    |-  A  =  ( Base `  P )   &    |-  Q  =  ( 0g `  P )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  F  e.  ( B  \  { Z } ) )   =>    |-  ( ph  ->  E. g  e.  ( A  \  { Q } ) ( S `
  ( F  .x.  X ) )  =  ( g  .xb  ( S `  X ) ) )
 
Theoremhdmap14lem3 38016* Prior to part 14 in [Baer] p. 49, line 26. (Contributed by NM, 31-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  (
 Base `  R )   &    |-  Z  =  ( 0g `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .xb  =  ( .s `  C )   &    |-  L  =  (
 LSpan `  C )   &    |-  P  =  (Scalar `  C )   &    |-  A  =  ( Base `  P )   &    |-  Q  =  ( 0g `  P )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  F  e.  ( B  \  { Z } ) )   =>    |-  ( ph  ->  E! g  e.  ( A  \  { Q } ) ( S `
  ( F  .x.  X ) )  =  ( g  .xb  ( S `  X ) ) )
 
Theoremhdmap14lem4a 38017* Simplify  ( A  \  { Q } ) in hdmap14lem3 38016 to provide a slightly simpler definition later. (Contributed by NM, 31-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  (
 Base `  R )   &    |-  Z  =  ( 0g `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .xb  =  ( .s `  C )   &    |-  L  =  (
 LSpan `  C )   &    |-  P  =  (Scalar `  C )   &    |-  A  =  ( Base `  P )   &    |-  Q  =  ( 0g `  P )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  F  e.  ( B  \  { Z } ) )   =>    |-  ( ph  ->  ( E! g  e.  ( A  \  { Q } )
 ( S `  ( F  .x.  X ) )  =  ( g  .xb  ( S `  X ) )  <->  E! g  e.  A  ( S `  ( F 
 .x.  X ) )  =  ( g  .xb  ( S `  X ) ) ) )
 
Theoremhdmap14lem4 38018* Simplify  ( A  \  { Q } ) in hdmap14lem3 38016 to provide a slightly simpler definition later. TODO: Use hdmap14lem4a 38017 if that one is also used directly elsewhere. Otherwise, merge hdmap14lem4a 38017 into this one. (Contributed by NM, 31-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  (
 Base `  R )   &    |-  Z  =  ( 0g `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .xb  =  ( .s `  C )   &    |-  L  =  (
 LSpan `  C )   &    |-  P  =  (Scalar `  C )   &    |-  A  =  ( Base `  P )   &    |-  Q  =  ( 0g `  P )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  F  e.  ( B  \  { Z } ) )   =>    |-  ( ph  ->  E! g  e.  A  ( S `  ( F  .x.  X ) )  =  ( g 
 .xb  ( S `  X ) ) )
 
Theoremhdmap14lem6 38019* Case where  F is zero. (Contributed by NM, 1-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  (
 Base `  R )   &    |-  Z  =  ( 0g `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .xb  =  ( .s `  C )   &    |-  L  =  (
 LSpan `  C )   &    |-  P  =  (Scalar `  C )   &    |-  A  =  ( Base `  P )   &    |-  Q  =  ( 0g `  P )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  F  =  Z )   =>    |-  ( ph  ->  E! g  e.  A  ( S `  ( F 
 .x.  X ) )  =  ( g  .xb  ( S `  X ) ) )
 
Theoremhdmap14lem7 38020* Combine cases of  F. TODO: Can this be done at once in hdmap14lem3 38016, in order to get rid of hdmap14lem6 38019? Perhaps modify lspsneu 17967 to become  E! k  e.  K instead of  E! k  e.  ( K  \  {  .0.  } )? (Contributed by NM, 1-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  (
 Base `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .xb  =  ( .s `  C )   &    |-  P  =  (Scalar `  C )   &    |-  A  =  ( Base `  P )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  F  e.  B )   =>    |-  ( ph  ->  E! g  e.  A  ( S `  ( F  .x.  X ) )  =  ( g  .xb  ( S `  X ) ) )
 
Theoremhdmap14lem8 38021 Part of proof of part 14 in [Baer] p. 49 lines 33-35. (Contributed by NM, 1-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .+b  =  ( +g  `  C )   &    |-  .xb  =  ( .s `  C )   &    |-  P  =  (Scalar `  C )   &    |-  A  =  ( Base `  P )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  F  e.  B )   &    |-  ( ph  ->  G  e.  A )   &    |-  ( ph  ->  I  e.  A )   &    |-  ( ph  ->  ( S `  ( F 
 .x.  X ) )  =  ( G  .xb  ( S `  X ) ) )   &    |-  ( ph  ->  ( S `  ( F 
 .x.  Y ) )  =  ( I  .xb  ( S `  Y ) ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  ( ph  ->  J  e.  A )   &    |-  ( ph  ->  ( S `  ( F  .x.  ( X 
 .+  Y ) ) )  =  ( J 
 .xb  ( S `  ( X  .+  Y ) ) ) )   =>    |-  ( ph  ->  ( ( J  .xb  ( S `  X ) ) 
 .+b  ( J  .xb  ( S `  Y ) ) )  =  ( ( G  .xb  ( S `  X ) ) 
 .+b  ( I  .xb  ( S `  Y ) ) ) )
 
Theoremhdmap14lem9 38022 Part of proof of part 14 in [Baer] p. 49 line 38. (Contributed by NM, 1-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .+b  =  ( +g  `  C )   &    |-  .xb  =  ( .s `  C )   &    |-  P  =  (Scalar `  C )   &    |-  A  =  ( Base `  P )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  F  e.  B )   &    |-  ( ph  ->  G  e.  A )   &    |-  ( ph  ->  I  e.  A )   &    |-  ( ph  ->  ( S `  ( F 
 .x.  X ) )  =  ( G  .xb  ( S `  X ) ) )   &    |-  ( ph  ->  ( S `  ( F 
 .x.  Y ) )  =  ( I  .xb  ( S `  Y ) ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  ( ph  ->  J  e.  A )   &    |-  ( ph  ->  ( S `  ( F  .x.  ( X 
 .+  Y ) ) )  =  ( J 
 .xb  ( S `  ( X  .+  Y ) ) ) )   =>    |-  ( ph  ->  G  =  I )
 
Theoremhdmap14lem10 38023 Part of proof of part 14 in [Baer] p. 49 line 38. (Contributed by NM, 3-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .+b  =  ( +g  `  C )   &    |-  .xb  =  ( .s `  C )   &    |-  P  =  (Scalar `  C )   &    |-  A  =  ( Base `  P )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  F  e.  B )   &    |-  ( ph  ->  G  e.  A )   &    |-  ( ph  ->  I  e.  A )   &    |-  ( ph  ->  ( S `  ( F 
 .x.  X ) )  =  ( G  .xb  ( S `  X ) ) )   &    |-  ( ph  ->  ( S `  ( F 
 .x.  Y ) )  =  ( I  .xb  ( S `  Y ) ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   =>    |-  ( ph  ->  G  =  I )
 
Theoremhdmap14lem11 38024 Part of proof of part 14 in [Baer] p. 50 line 3. (Contributed by NM, 3-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .+b  =  ( +g  `  C )   &    |-  .xb  =  ( .s `  C )   &    |-  P  =  (Scalar `  C )   &    |-  A  =  ( Base `  P )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  F  e.  B )   &    |-  ( ph  ->  G  e.  A )   &    |-  ( ph  ->  I  e.  A )   &    |-  ( ph  ->  ( S `  ( F 
 .x.  X ) )  =  ( G  .xb  ( S `  X ) ) )   &    |-  ( ph  ->  ( S `  ( F 
 .x.  Y ) )  =  ( I  .xb  ( S `  Y ) ) )   =>    |-  ( ph  ->  G  =  I )
 
Theoremhdmap14lem12 38025* Lemma for proof of part 14 in [Baer] p. 50. (Contributed by NM, 6-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .xb  =  ( .s `  C )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  B )   &    |-  P  =  (Scalar `  C )   &    |-  A  =  ( Base `  P )   &    |-  .0.  =  ( 0g `  U )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  G  e.  A )   =>    |-  ( ph  ->  (
 ( S `  ( F  .x.  X ) )  =  ( G  .xb  ( S `  X ) )  <->  A. y  e.  ( V  \  {  .0.  }
 ) ( S `  ( F  .x.  y ) )  =  ( G 
 .xb  ( S `  y ) ) ) )
 
Theoremhdmap14lem13 38026* Lemma for proof of part 14 in [Baer] p. 50. (Contributed by NM, 6-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .xb  =  ( .s `  C )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  B )   &    |-  P  =  (Scalar `  C )   &    |-  A  =  ( Base `  P )   &    |-  .0.  =  ( 0g `  U )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  G  e.  A )   =>    |-  ( ph  ->  (
 ( S `  ( F  .x.  X ) )  =  ( G  .xb  ( S `  X ) )  <->  A. y  e.  V  ( S `  ( F 
 .x.  y ) )  =  ( G  .xb  ( S `  y ) ) ) )
 
Theoremhdmap14lem14 38027* Part of proof of part 14 in [Baer] p. 50 line 3. (Contributed by NM, 6-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .xb  =  ( .s `  C )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  B )   &    |-  P  =  (Scalar `  C )   &    |-  A  =  ( Base `  P )   =>    |-  ( ph  ->  E! g  e.  A  A. x  e.  V  ( S `  ( F  .x.  x ) )  =  ( g 
 .xb  ( S `  x ) ) )
 
Theoremhdmap14lem15 38028* Part of proof of part 14 in [Baer] p. 50 line 3. Convert scalar base of dual to scalar base of vector space. (Contributed by NM, 6-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .xb  =  ( .s `  C )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  B )   =>    |-  ( ph  ->  E! g  e.  B  A. x  e.  V  ( S `  ( F  .x.  x ) )  =  ( g  .xb  ( S `  x ) ) )
 
Syntaxchg 38029 Extend class notation with g-map.
 class HGMap
 
Definitiondf-hgmap 38030* Define map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. (Contributed by NM, 25-Mar-2015.)
 |- HGMap  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k )  |->  { a  |  [. ( ( DVecH `  k ) `  w )  /  u ]. [. ( Base `  (Scalar `  u ) )  /  b ]. [. ( (HDMap `  k ) `  w )  /  m ]. a  e.  ( x  e.  b  |->  ( iota_ y  e.  b  A. v  e.  ( Base `  u ) ( m `  ( x ( .s `  u ) v ) )  =  ( y ( .s `  ( (LCDual `  k ) `  w ) ) ( m `
  v ) ) ) ) } )
 )
 
Theoremhgmapffval 38031* Map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. (Contributed by NM, 25-Mar-2015.)
 |-  H  =  ( LHyp `  K )   =>    |-  ( K  e.  X  ->  (HGMap `  K )  =  ( w  e.  H  |->  { a  |  [. (
 ( DVecH `  K ) `  w )  /  u ].
 [. ( Base `  (Scalar `  u ) )  /  b ]. [. ( (HDMap `  K ) `  w )  /  m ]. a  e.  ( x  e.  b  |->  ( iota_ y  e.  b  A. v  e.  ( Base `  u ) ( m `  ( x ( .s `  u ) v ) )  =  ( y ( .s `  ( (LCDual `  K ) `  w ) ) ( m `
  v ) ) ) ) } )
 )
 
Theoremhgmapfval 38032* Map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. (Contributed by NM, 25-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .xb  =  ( .s `  C )   &    |-  M  =  ( (HDMap `  K ) `  W )   &    |-  I  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  Y  /\  W  e.  H ) )   =>    |-  ( ph  ->  I  =  ( x  e.  B  |->  ( iota_ y  e.  B  A. v  e.  V  ( M `  ( x 
 .x.  v ) )  =  ( y  .xb  ( M `  v ) ) ) ) )
 
Theoremhgmapval 38033* Value of map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. Function sigma of scalar f in part 14 of [Baer] p. 50 line 4. TODO: variable names are inherited from older version. Maybe make more consistent with hdmap14lem15 38028. (Contributed by NM, 25-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .xb  =  ( .s `  C )   &    |-  M  =  ( (HDMap `  K ) `  W )   &    |-  I  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  Y  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  ( I `  X )  =  ( iota_ y  e.  B  A. v  e.  V  ( M `  ( X  .x.  v ) )  =  ( y 
 .xb  ( M `  v ) ) ) )
 
TheoremhgmapfnN 38034 Functionality of scalar sigma map. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  G  Fn  B )
 
Theoremhgmapcl 38035 Closure of scalar sigma map i.e. the map from the vector space scalar base to the dual space scalar base. (Contributed by NM, 6-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  B )   =>    |-  ( ph  ->  ( G `  F )  e.  B )
 
Theoremhgmapdcl 38036 Closure of the vector space to dual space scalar map, in the scalar sigma map. (Contributed by NM, 6-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  Q  =  (Scalar `  C )   &    |-  A  =  ( Base `  Q )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  B )   =>    |-  ( ph  ->  ( G `  F )  e.  A )
 
Theoremhgmapvs 38037 Part 15 of [Baer] p. 50 line 6. Also line 15 in [Holland95] p. 14. (Contributed by NM, 6-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .xb  =  ( .s `  C )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  F  e.  B )   =>    |-  ( ph  ->  ( S `  ( F  .x.  X ) )  =  ( ( G `  F )  .xb  ( S `  X ) ) )
 
Theoremhgmapval0 38038 Value of the scalar sigma map at zero. (Contributed by NM, 12-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  R  =  (Scalar `  U )   &    |-  .0.  =  ( 0g `  R )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  ( G `  .0.  )  =  .0.  )
 
Theoremhgmapval1 38039 Value of the scalar sigma map at one. (Contributed by NM, 12-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  R  =  (Scalar `  U )   &    |-  .1.  =  ( 1r `  R )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  ( G `  .1.  )  =  .1.  )
 
Theoremhgmapadd 38040 Part 15 of [Baer] p. 50 line 13. (Contributed by NM, 6-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( G `  ( X  .+  Y ) )  =  ( ( G `  X )  .+  ( G `
  Y ) ) )
 
Theoremhgmapmul 38041 Part 15 of [Baer] p. 50 line 16. The multiplication is reversed after converting to the dual space scalar to the vector space scalar. (Contributed by NM, 7-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( G `  ( X  .x.  Y ) )  =  ( ( G `  Y )  .x.  ( G `  X ) ) )
 
Theoremhgmaprnlem1N 38042 Lemma for hgmaprnN 38047. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .s `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  (
 Base `  C )   &    |-  P  =  (Scalar `  C )   &    |-  A  =  ( Base `  P )   &    |-  .xb  =  ( .s `  C )   &    |-  Q  =  ( 0g `  C )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  z  e.  A )   &    |-  ( ph  ->  t  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  s  e.  V )   &    |-  ( ph  ->  ( S `  s )  =  ( z  .xb  ( S `  t ) ) )   &    |-  ( ph  ->  k  e.  B )   &    |-  ( ph  ->  s  =  ( k  .x.  t )
 )   =>    |-  ( ph  ->  z  e.  ran  G )
 
Theoremhgmaprnlem2N 38043 Lemma for hgmaprnN 38047. Part 15 of [Baer] p. 50 line 20. We only require a subset relation, rather than equality, so that the case of zero  z is taken care of automatically. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .s `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  (
 Base `  C )   &    |-  P  =  (Scalar `  C )   &    |-  A  =  ( Base `  P )   &    |-  .xb  =  ( .s `  C )   &    |-  Q  =  ( 0g `  C )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  z  e.  A )   &    |-  ( ph  ->  t  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  s  e.  V )   &    |-  ( ph  ->  ( S `  s )  =  ( z  .xb  ( S `  t ) ) )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  N  =  (
 LSpan `  U )   &    |-  L  =  ( LSpan `  C )   =>    |-  ( ph  ->  ( N `  { s } )  C_  ( N `  { t } ) )
 
Theoremhgmaprnlem3N 38044* Lemma for hgmaprnN 38047. Eliminate  k. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .s `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  (
 Base `  C )   &    |-  P  =  (Scalar `  C )   &    |-  A  =  ( Base `  P )   &    |-  .xb  =  ( .s `  C )   &    |-  Q  =  ( 0g `  C )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  z  e.  A )   &    |-  ( ph  ->  t  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  s  e.  V )   &    |-  ( ph  ->  ( S `  s )  =  ( z  .xb  ( S `  t ) ) )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  N  =  (
 LSpan `  U )   &    |-  L  =  ( LSpan `  C )   =>    |-  ( ph  ->  z  e.  ran  G )
 
Theoremhgmaprnlem4N 38045* Lemma for hgmaprnN 38047. Eliminate  s. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .s `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  (
 Base `  C )   &    |-  P  =  (Scalar `  C )   &    |-  A  =  ( Base `  P )   &    |-  .xb  =  ( .s `  C )   &    |-  Q  =  ( 0g `  C )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  z  e.  A )   &    |-  ( ph  ->  t  e.  ( V  \  {  .0.  } ) )   =>    |-  ( ph  ->  z  e.  ran 
 G )
 
Theoremhgmaprnlem5N 38046 Lemma for hgmaprnN 38047. Eliminate  t. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .s `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  (
 Base `  C )   &    |-  P  =  (Scalar `  C )   &    |-  A  =  ( Base `  P )   &    |-  .xb  =  ( .s `  C )   &    |-  Q  =  ( 0g `  C )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  z  e.  A )   =>    |-  ( ph  ->  z  e.  ran  G )
 
TheoremhgmaprnN 38047 Part of proof of part 16 in [Baer] p. 50 line 23, Fs=G, except that we use the original vector space scalars for the range. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  ran  G  =  B )
 
Theoremhgmap11 38048 The scalar sigma map is one-to-one. (Contributed by NM, 7-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  (
 ( G `  X )  =  ( G `  Y )  <->  X  =  Y ) )
 
Theoremhgmapf1oN 38049 The scalar sigma map is a one-to-one onto function. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  G : B -1-1-onto-> B )
 
Theoremhgmapeq0 38050 The scalar sigma map is zero iff its argument is zero. (Contributed by NM, 12-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  .0.  =  ( 0g `  R )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  (
 ( G `  X )  =  .0.  <->  X  =  .0.  ) )
 
Theoremhdmapipcl 38051 The inner product (Hermitian form)  ( X ,  Y
) will be defined as  ( ( S `  Y ) `  X ). Show closure. (Contributed by NM, 7-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   =>    |-  ( ph  ->  (
 ( S `  Y ) `  X )  e.  B )
 
Theoremhdmapln1 38052 Linearity property that will be used for inner product. TODO: try to combine hypotheses in hdmap*ln* series. (Contributed by NM, 7-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  .+^  =  ( +g  `  R )   &    |-  .X.  =  ( .r `  R )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  Z  e.  V )   &    |-  ( ph  ->  A  e.  B )   =>    |-  ( ph  ->  ( ( S `  Z ) `  ( ( A 
 .x.  X )  .+  Y ) )  =  (
 ( A  .X.  (
 ( S `  Z ) `  X ) )  .+^  ( ( S `  Z ) `  Y ) ) )
 
Theoremhdmaplna1 38053 Additive property of first (inner product) argument. (Contributed by NM, 11-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  R  =  (Scalar `  U )   &    |-  .+^  =  (
 +g  `  R )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  Z  e.  V )   =>    |-  ( ph  ->  (
 ( S `  Z ) `  ( X  .+  Y ) )  =  ( ( ( S `
  Z ) `  X )  .+^  ( ( S `  Z ) `
  Y ) ) )
 
Theoremhdmaplns1 38054 Subtraction property of first (inner product) argument. (Contributed by NM, 12-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  R  =  (Scalar `  U )   &    |-  N  =  ( -g `  R )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  Z  e.  V )   =>    |-  ( ph  ->  (
 ( S `  Z ) `  ( X  .-  Y ) )  =  ( ( ( S `
  Z ) `  X ) N ( ( S `  Z ) `  Y ) ) )
 
Theoremhdmaplnm1 38055 Multiplicative property of first (inner product) argument. (Contributed by NM, 11-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  .X.  =  ( .r `  R )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  A  e.  B )   =>    |-  ( ph  ->  (
 ( S `  Y ) `  ( A  .x.  X ) )  =  ( A  .X.  ( ( S `  Y ) `  X ) ) )
 
Theoremhdmaplna2 38056 Additive property of second (inner product) argument. (Contributed by NM, 10-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  R  =  (Scalar `  U )   &    |-  .+^  =  (
 +g  `  R )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  Z  e.  V )   =>    |-  ( ph  ->  (
 ( S `  ( Y  .+  Z ) ) `
  X )  =  ( ( ( S `
  Y ) `  X )  .+^  ( ( S `  Z ) `
  X ) ) )
 
Theoremhdmapglnm2 38057 g-linear property of second (inner product) argument. Line 19 in [Holland95] p. 14. (Contributed by NM, 10-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  .X.  =  ( .r `  R )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  A  e.  B )   =>    |-  ( ph  ->  (
 ( S `  ( A  .x.  Y ) ) `
  X )  =  ( ( ( S `
  Y ) `  X )  .X.  ( G `
  A ) ) )
 
Theoremhdmapgln2 38058 g-linear property that will be used for inner product. (Contributed by NM, 14-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  .+^  =  ( +g  `  R )   &    |-  .X.  =  ( .r `  R )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  Z  e.  V )   &    |-  ( ph  ->  A  e.  B )   =>    |-  ( ph  ->  ( ( S `  (
 ( A  .x.  Y )  .+  Z ) ) `
  X )  =  ( ( ( ( S `  Y ) `
  X )  .X.  ( G `  A ) )  .+^  ( ( S `  Z ) `  X ) ) )
 
Theoremhdmaplkr 38059 Kernel of the vector to dual map. Line 16 in [Holland95] p. 14. TODO: eliminate  F hypothesis. (Contributed by NM, 9-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  F  =  (LFnl `  U )   &    |-  Y  =  (LKer `  U )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  V )   =>    |-  ( ph  ->  ( Y `  ( S `
  X ) )  =  ( O `  { X } ) )
 
Theoremhdmapellkr 38060 Membership in the kernel (as shown by hdmaplkr 38059) of the vector to dual map. Line 17 in [Holland95] p. 14. (Contributed by NM, 16-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  R  =  (Scalar `  U )   &    |-  .0.  =  ( 0g `  R )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   =>    |-  ( ph  ->  (
 ( ( S `  X ) `  Y )  =  .0.  <->  Y  e.  ( O `  { X }
 ) ) )
 
Theoremhdmapip0 38061 Zero property that will be used for inner product. (Contributed by NM, 9-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  R  =  (Scalar `  U )   &    |-  Z  =  ( 0g
 `  R )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  V )   =>    |-  ( ph  ->  ( ( ( S `  X ) `  X )  =  Z  <->  X  =  .0.  ) )
 
Theoremhdmapip1 38062 Construct a proportional vector  Y whose inner product with the original  X equals one. (Contributed by NM, 13-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  R  =  (Scalar `  U )   &    |-  .1.  =  ( 1r `  R )   &    |-  N  =  ( invr `  R )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  Y  =  ( ( N `  ( ( S `  X ) `  X ) )  .x.  X )   =>    |-  ( ph  ->  ( ( S `  X ) `  Y )  =  .1.  )
 
Theoremhdmapip0com 38063 Commutation property of Baer's sigma map (Holland's A map). Line 20 of [Holland95] p. 14. Also part of Lemma 1 of [Baer] p. 110 line 7. (Contributed by NM, 9-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  R  =  (Scalar `  U )   &    |-  .0.  =  ( 0g `  R )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   =>    |-  ( ph  ->  (
 ( ( S `  X ) `  Y )  =  .0.  <->  ( ( S `
  Y ) `  X )  =  .0.  ) )
 
Theoremhdmapinvlem1 38064 Line 27 in [Baer] p. 110. We use  C for Baer's u. Our unit vector  E has the required properties for his w by hdmapevec2 37982. Our  ( ( S `  E ) `  C ) means the inner product  <. C ,  E >. i.e. his f(u,w) (note argument reversal). (Contributed by NM, 11-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  E  =  <. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  ( (
 LTrn `  K ) `  W ) ) >.   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  C  e.  ( O `  { E } ) )   =>    |-  ( ph  ->  ( ( S `  E ) `  C )  =  .0.  )
 
Theoremhdmapinvlem2 38065 Line 28 in [Baer] p. 110, 0 = f(w,u). (Contributed by NM, 11-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  E  =  <. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  ( (
 LTrn `  K ) `  W ) ) >.   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  C  e.  ( O `  { E } ) )   =>    |-  ( ph  ->  ( ( S `  C ) `  E )  =  .0.  )
 
Theoremhdmapinvlem3 38066 Line 30 in [Baer] p. 110, f(sw + u, tw - v) = 0. (Contributed by NM, 12-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  E  =  <. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  ( (
 LTrn `  K ) `  W ) ) >.   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .x. 
 =  ( .s `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  (
 Base `  R )   &    |-  .X.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  C  e.  ( O `  { E } ) )   &    |-  ( ph  ->  D  e.  ( O `  { E }
 ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  ( ph  ->  J  e.  B )   &    |-  ( ph  ->  ( I  .X.  ( G `  J ) )  =  ( ( S `  D ) `  C ) )   =>    |-  ( ph  ->  (
 ( S `  (
 ( J  .x.  E )  .-  D ) ) `
  ( ( I 
 .x.  E )  .+  C ) )  =  .0.  )
 
Theoremhdmapinvlem4 38067 Part 1.1 of Proposition 1 of [Baer] p. 110. We use  C,  D,  I, and  J for Baer's u, v, s, and t. Our unit vector  E has the required properties for his w by hdmapevec2 37982. Our  ( ( S `  D ) `  C ) means his f(u,v) (note argument reversal). (Contributed by NM, 12-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  E  =  <. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  ( (
 LTrn `  K ) `  W ) ) >.   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .x. 
 =  ( .s `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  (
 Base `  R )   &    |-  .X.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  C  e.  ( O `  { E } ) )   &    |-  ( ph  ->  D  e.  ( O `  { E }
 ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  ( ph  ->  J  e.  B )   &    |-  ( ph  ->  ( I  .X.  ( G `  J ) )  =  ( ( S `  D ) `  C ) )   =>    |-  ( ph  ->  ( J  .X.  ( G `  I ) )  =  ( ( S `  C ) `  D ) )
 
Theoremhdmapglem5 38068 Part 1.2 in [Baer] p. 110 line 34, f(u,v) alpha = f(v,u). (Contributed by NM, 12-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  E  =  <. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  ( (
 LTrn `  K ) `  W ) ) >.   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .x. 
 =  ( .s `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  (
 Base `  R )   &    |-  .X.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  C  e.  ( O `  { E } ) )   &    |-  ( ph  ->  D  e.  ( O `  { E }
 ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  ( ph  ->  J  e.  B )   =>    |-  ( ph  ->  ( G `  ( ( S `
  D ) `  C ) )  =  ( ( S `  C ) `  D ) )
 
Theoremhgmapvvlem1 38069 Involution property of scalar sigma map. Line 10 in [Baer] p. 111, t sigma squared = t. Our  E,  C,  D,  Y,  X correspond to Baer's w, h, k, s, t. (Contributed by NM, 13-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  E  =  <. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  ( (
 LTrn `  K ) `  W ) ) >.   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  .X.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   &    |- 
 .1.  =  ( 1r `  R )   &    |-  N  =  (
 invr `  R )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ( B  \  {  .0.  } ) )   &    |-  ( ph  ->  C  e.  ( O `  { E } ) )   &    |-  ( ph  ->  D  e.  ( O `  { E }
 ) )   &    |-  ( ph  ->  ( ( S `  D ) `  C )  =  .1.  )   &    |-  ( ph  ->  Y  e.  ( B  \  {  .0.  } ) )   &    |-  ( ph  ->  ( Y  .X.  ( G `  X ) )  =  .1.  )   =>    |-  ( ph  ->  ( G `  ( G `  X ) )  =  X )
 
Theoremhgmapvvlem2 38070 Lemma for hgmapvv 38072. Eliminate  Y (Baer's s). (Contributed by NM, 13-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  E  =  <. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  ( (
 LTrn `  K ) `  W ) ) >.   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  .X.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   &    |- 
 .1.  =  ( 1r `  R )   &    |-  N  =  (
 invr `  R )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ( B  \  {  .0.  } ) )   &    |-  ( ph  ->  C  e.  ( O `  { E } ) )   &    |-  ( ph  ->  D  e.  ( O `  { E }
 ) )   &    |-  ( ph  ->  ( ( S `  D ) `  C )  =  .1.  )   =>    |-  ( ph  ->  ( G `  ( G `  X ) )  =  X )
 
Theoremhgmapvvlem3 38071 Lemma for hgmapvv 38072. Eliminate  ( ( S `  D
) `  C )  =  .1. (Baer's f(h,k)=1). (Contributed by NM, 13-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  E  =  <. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  ( (
 LTrn `  K ) `  W ) ) >.   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  .X.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   &    |- 
 .1.  =  ( 1r `  R )   &    |-  N  =  (
 invr `  R )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ( B  \  {  .0.  } ) )   =>    |-  ( ph  ->  ( G `  ( G `  X ) )  =  X )
 
Theoremhgmapvv 38072 Value of a double involution. Part 1.2 of [Baer] p. 110 line 37. (Contributed by NM, 13-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  ( G `  ( G `
  X ) )  =  X )
 
Theoremhdmapglem7a 38073* Lemma for hdmapg 38076. (Contributed by NM, 14-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  E  =  <. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  ( (
 LTrn `  K ) `  W ) ) >.   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  .(+)  =  ( LSSum `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  V )   =>    |-  ( ph  ->  E. u  e.  ( O `
  { E }
 ) E. k  e.  B  X  =  ( ( k  .x.  E )  .+  u ) )
 
Theoremhdmapglem7b 38074 Lemma for hdmapg 38076. (Contributed by NM, 14-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  E  =  <. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  ( (
 LTrn `  K ) `  W ) ) >.   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  .(+)  =  ( LSSum `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  V )   &    |-  .X.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   &    |-  .+b  =  ( +g  `  R )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  x  e.  ( O `  { E }
 ) )   &    |-  ( ph  ->  y  e.  ( O `  { E } ) )   &    |-  ( ph  ->  m  e.  B )   &    |-  ( ph  ->  n  e.  B )   =>    |-  ( ph  ->  ( ( S `  (
 ( m  .x.  E )  .+  x ) ) `
  ( ( n 
 .x.  E )  .+  y
 ) )  =  ( ( n  .X.  ( G `  m ) ) 
 .+b  ( ( S `
  x ) `  y ) ) )
 
Theoremhdmapglem7 38075 Lemma for hdmapg 38076. Line 15 in [Baer] p. 111, f(x,y) alpha = f(y,x). In the proof, our  E,  ( O `  { E } )  X,  Y,  k,  u,  l,  v correspond to Baer's w, H, x, y, x', x'', y' , y'', and our  ( ( S `
 Y ) `  X ) corresponds to Baer's f(x,y). (Contributed by NM, 14-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  E  =  <. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  ( (
 LTrn `  K ) `  W ) ) >.   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  .(+)  =  ( LSSum `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  V )   &    |-  .X.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   &    |-  .+b  =  ( +g  `  R )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  Y  e.  V )   =>    |-  ( ph  ->  ( G `  ( ( S `
  Y ) `  X ) )  =  ( ( S `  X ) `  Y ) )
 
Theoremhdmapg 38076 Apply the scalar sigma function (involution)  G to an inner product reverses the arguments. The inner product of  X and  Y is represented by  ( ( S `  Y ) `  X
). Line 15 in [Baer] p. 111, f(x,y) alpha = f(y,x). (Contributed by NM, 14-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   =>    |-  ( ph  ->  ( G `  ( ( S `
  Y ) `  X ) )  =  ( ( S `  X ) `  Y ) )
 
Theoremhdmapoc 38077* Express our constructed orthocomplement (polarity) in terms of the Hilbert space definition of orthocomplement. Lines 24 and 25 in [Holland95] p. 14. (Contributed by NM, 17-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  R  =  (Scalar `  U )   &    |-  .0.  =  ( 0g `  R )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  C_  V )   =>    |-  ( ph  ->  ( O `  X )  =  { y  e.  V  |  A. z  e.  X  ( ( S `  z ) `  y
 )  =  .0.  }
 )
 
Syntaxchlh 38078 Extend class notation with the final constructed Hilbert space.
 class HLHil
 
Definitiondf-hlhil 38079* Define our final Hilbert space constructed from a Hilbert lattice. (Contributed by NM, 21-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
 |- HLHil  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k )  |->  [_ (
 ( DVecH `  k ) `  w )  /  u ]_
 [_ ( Base `  u )  /  v ]_ ( { <. ( Base `  ndx ) ,  v >. , 
 <. ( +g  `  ndx ) ,  ( +g  `  u ) >. ,  <. (Scalar `  ndx ) ,  (
 ( ( EDRing `  k
 ) `  w ) sSet  <.
 ( *r `  ndx ) ,  ( (HGMap `  k ) `  w ) >. ) >. }  u.  {
 <. ( .s `  ndx ) ,  ( .s `  u ) >. ,  <. ( .i `  ndx ) ,  ( x  e.  v ,  y  e.  v  |->  ( ( ( (HDMap `  k ) `  w ) `  y ) `  x ) ) >. } ) ) )
 
Theoremhlhilset 38080* The final Hilbert space constructed from a Hilbert lattice  K and an arbitrary hyperplane  W in  K. (Contributed by NM, 21-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  L  =  ( (HLHil `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  E  =  ( ( EDRing `  K ) `  W )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  R  =  ( E sSet  <. ( *r `  ndx ) ,  G >. )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  .,  =  ( x  e.  V ,  y  e.  V  |->  ( ( S `  y ) `  x ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   =>    |-  ( ph  ->  L  =  ( { <. ( Base ` 
 ndx ) ,  V >. ,  <. ( +g  `  ndx ) ,  .+  >. ,  <. (Scalar `  ndx ) ,  R >. }  u.  { <. ( .s `  ndx ) ,  .x.  >. ,  <. ( .i
 `  ndx ) ,  .,  >. } ) )
 
Theoremhlhilsca 38081 The scalar of the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( (HLHil `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  E  =  ( ( EDRing `  K ) `  W )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  R  =  ( E sSet  <. ( *r `
  ndx ) ,  G >. )   =>    |-  ( ph  ->  R  =  (Scalar `  U )
 )
 
Theoremhlhilbase 38082 The base set of the final constructed Hilbert space. (Contributed by NM, 21-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( (HLHil `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  L  =  ( ( DVecH `  K ) `  W )   &    |-  M  =  (
 Base `  L )   =>    |-  ( ph  ->  M  =  ( Base `  U ) )
 
Theoremhlhilplus 38083 The vector addition for the final constructed Hilbert space. (Contributed by NM, 21-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( (HLHil `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  L  =  ( ( DVecH `  K ) `  W )   &    |-  .+  =  ( +g  `  L )   =>    |-  ( ph  ->  .+  =  ( +g  `  U ) )
 
Theoremhlhilslem 38084 Lemma for hlhilsbase2 38088. (Contributed by Mario Carneiro, 28-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  E  =  ( ( EDRing `  K ) `  W )   &    |-  U  =  ( (HLHil `  K ) `  W )   &    |-  R  =  (Scalar `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  F  = Slot  N   &    |-  N  e.  NN   &    |-  N  <  4   &    |-  C  =  ( F `  E )   =>    |-  ( ph  ->  C  =  ( F `  R ) )
 
Theoremhlhilsbase 38085 The scalar base set of the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  E  =  ( ( EDRing `  K ) `  W )   &    |-  U  =  ( (HLHil `  K ) `  W )   &    |-  R  =  (Scalar `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  C  =  (
 Base `  E )   =>    |-  ( ph  ->  C  =  ( Base `  R ) )
 
Theoremhlhilsplus 38086 Scalar addition for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  E  =  ( ( EDRing `  K ) `  W )   &    |-  U  =  ( (HLHil `  K ) `  W )   &    |-  R  =  (Scalar `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  .+  =  ( +g  `  E )   =>    |-  ( ph  ->  .+  =  ( +g  `  R ) )
 
Theoremhlhilsmul 38087 Scalar multiplication for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  E  =  ( ( EDRing `  K ) `  W )   &    |-  U  =  ( (HLHil `  K ) `  W )   &    |-  R  =  (Scalar `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  .x.  =  ( .r `  E )   =>    |-  ( ph  ->  .x. 
 =  ( .r `  R ) )
 
Theoremhlhilsbase2 38088 The scalar base set of the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  L  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  (Scalar `  L )   &    |-  U  =  ( (HLHil `  K ) `  W )   &    |-  R  =  (Scalar `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  C  =  (
 Base `  S )   =>    |-  ( ph  ->  C  =  ( Base `  R ) )
 
Theoremhlhilsplus2 38089 Scalar addition for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  L  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  (Scalar `  L )   &    |-  U  =  ( (HLHil `  K ) `  W )   &    |-  R  =  (Scalar `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  .+  =  ( +g  `  S )   =>    |-  ( ph  ->  .+  =  ( +g  `  R ) )
 
Theoremhlhilsmul2 38090 Scalar multiplication for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  L  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  (Scalar `  L )   &    |-  U  =  ( (HLHil `  K ) `  W )   &    |-  R  =  (Scalar `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  .x.  =  ( .r `  S )   =>    |-  ( ph  ->  .x. 
 =  ( .r `  R ) )
 
Theoremhlhils0 38091 The scalar ring zero for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 29-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  L  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  (Scalar `  L )   &    |-  U  =  ( (HLHil `  K ) `  W )   &    |-  R  =  (Scalar `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  .0.  =  ( 0g `  S )   =>    |-  ( ph  ->  .0.  =  ( 0g `  R ) )
 
Theoremhlhils1N 38092 The scalar ring unity for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 29-Jun-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  L  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  (Scalar `  L )   &    |-  U  =  ( (HLHil `  K ) `  W )   &    |-  R  =  (Scalar `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  .1.  =  ( 1r `  S )   =>    |-  ( ph  ->  .1.  =  ( 1r `  R ) )
 
Theoremhlhilvsca 38093 The scalar product for the final constructed Hilbert space. (Contributed by NM, 21-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  L  =  ( ( DVecH `  K ) `  W )   &    |-  .x.  =  ( .s `  L )   &    |-  U  =  ( (HLHil `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  .x. 
 =  ( .s `  U ) )
 
Theoremhlhilip 38094* Inner product operation for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  L  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  L )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  U  =  ( (HLHil `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  .,  =  ( x  e.  V ,  y  e.  V  |->  ( ( S `  y ) `
  x ) )   =>    |-  ( ph  ->  .,  =  ( .i `  U ) )
 
Theoremhlhilipval 38095 Value of inner product operation for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  L  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  L )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  U  =  ( (HLHil `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  .,  =  ( .i `  U )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   =>    |-  ( ph  ->  ( X  .,  Y )  =  ( ( S `  Y ) `  X ) )
 
Theoremhlhilnvl 38096 The involution operation of the star division ring for the final constructed Hilbert space. (Contributed by NM, 20-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( (HLHil `  K ) `  W )   &    |-  R  =  (Scalar `  U )   &    |-  .*  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  .*  =  ( *r `  R ) )
 
Theoremhlhillvec 38097 The final constructed Hilbert space is a vector space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 29-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( (HLHil `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  U  e.  LVec )
 
Theoremhlhildrng 38098 The star division ring for the final constructed Hilbert space is a division ring. (Contributed by NM, 20-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( (HLHil `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  R  =  (Scalar `  U )   =>    |-  ( ph  ->  R  e. 
 DivRing )
 </