![]() |
Metamath
Proof Explorer Theorem List (p. 365 of 409) | < Previous Next > |
Browser slow? Try the
Unicode version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-26620) |
![]() (26621-28143) |
![]() (28144-40813) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | frege131d 36401 |
If ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege133d 36402 |
If ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
In 1879, Frege introduced notation for documenting formal reasoning about propositions (and classes) which covered elements of propositional logic, predicate calculus and reasoning about relations. However, due to the pitfalls of naive set theory, adapting this work for inclusion in set.mm required dividing statements about propositions from those about classes and identifying when a restriction to sets is required. For an overview comparing the details of Frege's two-dimensional notation and that used in set.mm, see mmfrege.html. See ru 3278 for discussion of an example of a class that is not a set. Numbered propositions from [Frege1879]. ax-frege1 36431, ax-frege2 36432, ax-frege8 36450, ax-frege28 36471, ax-frege31 36475, ax-frege41 36486, frege52 (see ax-frege52a 36498, frege52b 36530, and ax-frege52c 36529 for translations), frege54 (see ax-frege54a 36503, frege54b 36534 and ax-frege54c 36533 for translations) and frege58 (see ax-frege58a 36516, ax-frege58b 36542 and frege58c 36562 for translations) are considered "core" or axioms. However, at least ax-frege8 36450 can be derived from ax-frege1 36431 and ax-frege2 36432, see axfrege8 36448.
Frege introduced implication, negation and the universal qualifier as
primitives and did not in the numbered propositions use other logical
connectives other than equivalence introduced in ax-frege52a 36498,
frege52b 36530, and ax-frege52c 36529. In dffrege69 36573, Frege introduced
English translations for specific propositions lifted in part from a translation by Stefan Bauer-Mengelberg as reprinted in From Frege to Goedel: A Source Book in Mathematical Logic, 1879-1931. An attempt to align these propositions in the larger set.mm database has also been made. See frege77d 36383 for an example. | ||
Section 2 introduces the turnstile
Section 8 introduces the problematic notation for identity of conceptual
content which must be separated into cases for biimplication
Section 11 introduces notation for generality, but there is no standard
notation for generality when the variable is a proposition because it was
realized after Frege that the universe of all possible propositions includes
paradoxical constructions leading to the failure of naive set theory. So
adopting f( Under this interpreation the text of section 11 gives us sp 1948 (or simpl 463 and simpr 467 and anifp 1443 in the propositional case) and statments similar to cbvalivw 1861, ax-gen 1680, alrimiv 1784, and alrimdv 1786. These last four introduce a generality and have no useful definition in terms of propositional variables.
Section 12 introduces some combinations of primitive symbols and their human
language counterparts. Using class notation, these can also be expressed
without dummy variables. All are A,
Notation for relations between expressions also can be written in various
ways. All E are P, | ||
Theorem | dfxor4 36403 | Express exclusive-or in terms of implication and negation. Statement in [Frege1879] p. 12. (Contributed by RP, 14-Apr-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | dfxor5 36404 | Express exclusive-or in terms of implication and negation. Statement in [Frege1879] p. 12. (Contributed by RP, 14-Apr-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | df3or2 36405 | Express triple-or in terms of implication and negation. Statement in [Frege1879] p. 11. (Contributed by RP, 25-Jul-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | df3an2 36406 | Express triple-and in terms of implication and negation. Statement in [Frege1879] p. 12. (Contributed by RP, 25-Jul-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nev 36407* | Express that not every set is in a class. (Contributed by RP, 16-Apr-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | dfss6 36408* | Another definition of subclasshood. (Contributed by RP, 16-Apr-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ndisj 36409* | Express that an intersection is not empty. (Contributed by RP, 16-Apr-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 0pssin 36410* | Express that an intersection is not empty. (Contributed by RP, 16-Apr-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
The statement As Frege wasn't using the language of classes or sets, this naturally differs from the set-theoretic notion that a set is hereditary in a property: that all of its elements have a property and all of their elements have the property and so-on. | ||
Theorem | rp-imass 36411 |
If the ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Syntax | whe 36412 |
The property of relation ![]() ![]() |
![]() ![]() ![]() | ||
Definition | df-he 36413 |
The property of relation ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | dfhe2 36414 |
The property of relation ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | dfhe3 36415* |
The property of relation ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | heeq12 36416 | Equality law for relations being herditary over a class. (Contributed by RP, 27-Mar-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | heeq1 36417 | Equality law for relations being herditary over a class. (Contributed by RP, 27-Mar-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | heeq2 36418 | Equality law for relations being herditary over a class. (Contributed by RP, 27-Mar-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | sbcheg 36419 | Distribute proper substitution through herditary relation. (Contributed by RP, 29-Jun-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | hess 36420 | Subclass law for relations being herditary over a class. (Contributed by RP, 27-Mar-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | xphe 36421 | Any Cartesian product is hereditary in its second class. (Contributed by RP, 27-Mar-2020.) (Proof shortened by OpenAI, 3-Jul-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | xpheOLD 36422 | Any Cartesian product is hereditary in its second class. (Contributed by RP, 27-Mar-2020.) Obsolete version of xphe 36421 as of 3-Jul-2020. (New usage is discouraged.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 0he 36423 | The empty relation is hereditary in any class. (Contributed by RP, 27-Mar-2020.) |
![]() ![]() ![]() | ||
Theorem | 0heALT 36424 | The empty relation is hereditary in any class. (Contributed by RP, 27-Mar-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
![]() ![]() ![]() | ||
Theorem | he0 36425 | Any relation is hereditary in the empty set. (Contributed by RP, 27-Mar-2020.) |
![]() ![]() ![]() | ||
Theorem | unhe1 36426 | The union of two relations hereditary in a class is also hereditary in a class. (Contributed by RP, 28-Mar-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | snhesn 36427 | Any singleton is hereditary in any singleton. (Contributed by RP, 28-Mar-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | idhe 36428 | The identity relation is hereditary in any class. (Contributed by RP, 28-Mar-2020.) |
![]() ![]() ![]() | ||
Theorem | psshepw 36429 | The relation between sets and their proper subsets is hereditary in the powerclass of any class. (Contributed by RP, 28-Mar-2020.) |
![]() ![]() ![]() ![]() ![]() | ||
Theorem | sshepw 36430 | The relation between sets and their subsets is hereditary in the powerclass of any class. (Contributed by RP, 28-Mar-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-frege1 36431 |
The case in which ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-frege2 36432 |
If a proposition ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | rp-simp2-frege 36433 | Simplification of triple conjunction. Compare with simp2 1015. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | rp-simp2 36434 | Simplification of triple conjunction. Identical to simp2 1015. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | rp-frege3g 36435 |
Add antecedent to ax-frege2 36432. More general statement than frege3 36436.
Like ax-frege2 36432, it is essentially a closed form of mpd 15,
however it
has an extra antecedent.
It would be more natural to prove from a1i 11 and ax-frege2 36432 in Metamath. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege3 36436 | Add antecedent to ax-frege2 36432. Special case of rp-frege3g 36435. Proposition 3 of [Frege1879] p. 29. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | rp-misc1-frege 36437 | Double-use of ax-frege2 36432. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | rp-frege24 36438 | Introducing an embedded antecedent. Alternate proof for frege24 36456. Closed form for a1d 26. (Contributed by RP, 24-Dec-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | rp-frege4g 36439 | Deduction related to distribution. (Contributed by RP, 24-Dec-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege4 36440 | Special case of closed form of a2d 29. Special case of rp-frege4g 36439. Proposition 4 of [Frege1879] p. 31. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege5 36441 | A closed form of syl 17. Identical to imim2 55. Theorem *2.05 of [WhiteheadRussell] p. 100. Proposition 5 of [Frege1879] p. 32. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | rp-7frege 36442 | Distribute antecedent and add another. (Contributed by RP, 24-Dec-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | rp-4frege 36443 | Elimination of a nested antecedent of special form. (Contributed by RP, 24-Dec-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | rp-6frege 36444 | Elimination of a nested antecedent of special form. (Contributed by RP, 24-Dec-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | rp-8frege 36445 | Eliminate antecedent when it is implied by previous antecedent. (Contributed by RP, 24-Dec-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | rp-frege25 36446 | Closed form for a1dd 47. Alternate route to Proposition 25 of [Frege1879] p. 42. (Contributed by RP, 24-Dec-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege6 36447 | A closed form of imim2d 54 which is a deduction adding nested antecedents. Proposition 6 of [Frege1879] p. 33. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | axfrege8 36448 |
Swap antecedents. Identical to pm2.04 85. This demonstrates that Axiom 8
of [Frege1879] p. 35 is redundant.
Proof follows closely proof of pm2.04 85 in http://us.metamath.org/mmsolitaire/pmproofs.txt, but in the style of Frege's 1879 work. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege7 36449 | A closed form of syl6 34. The first antecedent is used to replace the consequent of the second antecedent. Proposition 7 of [Frege1879] p. 34. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-frege8 36450 | Swap antecedents. If two conditions have a proposition as a consequence, their order is immaterial. Third axiom of Frege's 1879 work but identical to pm2.04 85 which can be proved from only ax-mp 5, ax-frege1 36431, and ax-frege2 36432. (Redundant) Axiom 8 of [Frege1879] p. 35. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege26 36451 | Identical to idd 25. Proposition 26 of [Frege1879] p. 42. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege27 36452 |
We cannot (at the same time) affirm ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege9 36453 | Closed form of syl 17 with swapped antecedents. This proposition differs from frege5 36441 only in an unessential way. Identical to imim1 79. Proposition 9 of [Frege1879] p. 35. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege12 36454 | A closed form of com23 81. Proposition 12 of [Frege1879] p. 37. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege11 36455 |
Elimination of a nested antecedent as a partial converse of ja 166. If
the
proposition that ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege24 36456 | Closed form for a1d 26. Deduction introducing an embedded antecedent. Identical to rp-frege24 36438 which was proved without relying on ax-frege8 36450. Proposition 24 of [Frege1879] p. 42. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege16 36457 | A closed form of com34 86. Proposition 16 of [Frege1879] p. 38. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege25 36458 | Closed form for a1dd 47. Proposition 25 of [Frege1879] p. 42. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege18 36459 | Closed form of a syllogism followed by a swap of antecedents. Proposition 18 of [Frege1879] p. 39. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege22 36460 | A closed form of com45 92. Proposition 22 of [Frege1879] p. 41. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege10 36461 | Result commuting antecedents within an antecedent. Proposition 10 of [Frege1879] p. 36. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege17 36462 | A closed form of com3l 84. Proposition 17 of [Frege1879] p. 39. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege13 36463 | A closed form of com3r 82. Proposition 13 of [Frege1879] p. 37. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege14 36464 | Closed form of a deduction based on com3r 82. Proposition 14 of [Frege1879] p. 37. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege19 36465 | A closed form of syl6 34. Proposition 19 of [Frege1879] p. 39. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege23 36466 | Syllogism followed by rotation of three antecedents. Proposition 23 of [Frege1879] p. 42. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege15 36467 | A closed form of com4r 89. Proposition 15 of [Frege1879] p. 38. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege21 36468 | Replace antecedent in antecedent. Proposition 21 of [Frege1879] p. 40. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege20 36469 | A closed form of syl8 72. Proposition 20 of [Frege1879] p. 40. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | axfrege28 36470 | Contraposition. Identical to con3 141. Theorem *2.16 of [WhiteheadRussell] p. 103. (Contributed by RP, 24-Dec-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-frege28 36471 | Contraposition. Identical to con3 141. Theorem *2.16 of [WhiteheadRussell] p. 103. Axiom 28 of [Frege1879] p. 43. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege29 36472 | Closed form of con3d 140. Proposition 29 of [Frege1879] p. 43. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege30 36473 | Commuted, closed form of con3d 140. Proposition 30 of [Frege1879] p. 44. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | axfrege31 36474 | Identical to notnot2 117. Axiom 31 of [Frege1879] p. 44. (Contributed by RP, 24-Dec-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-frege31 36475 |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege32 36476 | Deduce con1 133 from con3 141. Proposition 32 of [Frege1879] p. 44. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege33 36477 |
If ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege34 36478 |
If as a conseqence of the occurence of the circumstance ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege35 36479 | Commuted, closed form of con1d 129. Proposition 35 of [Frege1879] p. 45. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege36 36480 |
The case in which ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege37 36481 |
If ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege38 36482 | Identical to pm2.21 112. Proposition 38 of [Frege1879] p. 46. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege39 36483 | Syllogism between pm2.18 114 and pm2.24 113. Proposition 39 of [Frege1879] p. 46. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege40 36484 | Anything implies pm2.18 114. Proposition 40 of [Frege1879] p. 46. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | axfrege41 36485 | Identical to notnot1 127. Axiom 41 of [Frege1879] p. 47. (Contributed by RP, 24-Dec-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-frege41 36486 |
The affirmation of ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege42 36487 | Not not id 22. Proposition 42 of [Frege1879] p. 47. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege43 36488 |
If there is a choice only between ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege44 36489 | Similar to a commuted pm2.62 415. Proposition 44 of [Frege1879] p. 47. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege45 36490 | Deduce pm2.6 175 from con1 133. Proposition 45 of [Frege1879] p. 47. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege46 36491 |
If ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege47 36492 |
Deduce consequence follows from either path implied by a disjunction. If
![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege48 36493 |
Closed form of syllogism with internal disjunction. If ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege49 36494 | Closed form of deduction with disjunction. Proposition 49 of [Frege1879] p. 49. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege50 36495 | Closed form of jaoi 385. Proposition 50 of [Frege1879] p. 49. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege51 36496 | Compare with jaod 386. Proposition 51 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Here we leverage df-ifp 1436 to partition a wff into two that are disjoint with the selector wff.
Thus if we are given | ||
Theorem | axfrege52a 36497 | Justification for ax-frege52a 36498. (Contributed by RP, 17-Apr-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-frege52a 36498 |
The case when the content of ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege52aid 36499 |
The case when the content of ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | frege53aid 36500 | Specialization of frege53a 36501. Proposition 53 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |