HomeHome Metamath Proof Explorer
Theorem List (p. 360 of 377)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-25811)
  Hilbert Space Explorer  Hilbert Space Explorer
(25812-27336)
  Users' Mathboxes  Users' Mathboxes
(27337-37662)
 

Theorem List for Metamath Proof Explorer - 35901-36000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcdleme32snaw 35901* Show that  [_ R  / 
s ]_ N is an atom not under  W. (Contributed by NM, 6-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W 
 /\  -.  t  .<_  ( P  .\/  Q )
 )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( [_ R  /  s ]_ N  e.  A  /\  -.  [_ R  /  s ]_ N  .<_  W ) )
 
Theoremcdleme32snb 35902* Show closure of  [_ R  /  s ]_ N. (Contributed by NM, 1-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W 
 /\  -.  t  .<_  ( P  .\/  Q )
 )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  [_ R  /  s ]_ N  e.  B )
 
Theoremcdleme32fva 35903* Part of proof of Lemma D in [Crawley] p. 113. Value of  F at an atom not under  W. (Contributed by NM, 2-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W 
 /\  -.  t  .<_  ( P  .\/  Q )
 )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   &    |-  O  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q )  ->  [_ R  /  x ]_ O  =  [_ R  /  s ]_ N )
 
Theoremcdleme32fva1 35904* Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 2-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W 
 /\  -.  t  .<_  ( P  .\/  Q )
 )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   &    |-  O  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q )  ->  ( F `  R )  =  [_ R  /  s ]_ N )
 
Theoremcdleme32fvaw 35905* Show that  ( F `  R ) is an atom not under  W when  R is an atom not under  W. (Contributed by NM, 18-Apr-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W 
 /\  -.  t  .<_  ( P  .\/  Q )
 )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   &    |-  O  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  (
 ( F `  R )  e.  A  /\  -.  ( F `  R )  .<_  W ) )
 
Theoremcdleme32fvcl 35906* Part of proof of Lemma D in [Crawley] p. 113. Closure of the function  F. (Contributed by NM, 10-Feb-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W 
 /\  -.  t  .<_  ( P  .\/  Q )
 )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   &    |-  O  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  X  e.  B )  ->  ( F `  X )  e.  B )
 
Theoremcdleme32a 35907* Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 19-Feb-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W 
 /\  -.  t  .<_  ( P  .\/  Q )
 )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   &    |-  O  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( X  e.  B  /\  ( P  =/=  Q 
 /\  -.  X  .<_  W ) )  /\  (
 ( s  e.  A  /\  -.  s  .<_  W ) 
 /\  ( s  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( F `  X )  =  ( N  .\/  ( X  ./\ 
 W ) ) )
 
Theoremcdleme32b 35908* Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 19-Feb-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W 
 /\  -.  t  .<_  ( P  .\/  Q )
 )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   &    |-  O  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( X  e.  B  /\  Y  e.  B  /\  ( P  =/=  Q  /\  -.  X  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  ( s  .\/  ( X 
 ./\  W ) )  =  X  /\  X  .<_  Y ) )  ->  ( F `  Y )  =  ( N  .\/  ( Y  ./\  W ) ) )
 
Theoremcdleme32c 35909* Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 19-Feb-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W 
 /\  -.  t  .<_  ( P  .\/  Q )
 )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   &    |-  O  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( X  e.  B  /\  Y  e.  B  /\  ( P  =/=  Q  /\  -.  X  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  ( s  .\/  ( X 
 ./\  W ) )  =  X  /\  X  .<_  Y ) )  ->  ( F `  X )  .<_  ( F `  Y ) )
 
Theoremcdleme32d 35910* Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 20-Feb-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W 
 /\  -.  t  .<_  ( P  .\/  Q )
 )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   &    |-  O  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( X  e.  B  /\  Y  e.  B  /\  ( P  =/=  Q  /\  -.  X  .<_  W ) )  /\  X  .<_  Y )  ->  ( F `  X )  .<_  ( F `
  Y ) )
 
Theoremcdleme32e 35911* Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 20-Feb-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W 
 /\  -.  t  .<_  ( P  .\/  Q )
 )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   &    |-  O  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/=  Q  /\  -.  Y  .<_  W ) ) 
 /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  ( s  .\/  ( Y 
 ./\  W ) )  =  Y  /\  X  .<_  Y ) )  ->  ( F `  X )  .<_  ( F `  Y ) )
 
Theoremcdleme32f 35912* Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 20-Feb-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W 
 /\  -.  t  .<_  ( P  .\/  Q )
 )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   &    |-  O  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/=  Q  /\  -.  Y  .<_  W ) ) 
 /\  X  .<_  Y ) 
 ->  ( F `  X )  .<_  ( F `  Y ) )
 
Theoremcdleme32le 35913* Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 20-Feb-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W 
 /\  -.  t  .<_  ( P  .\/  Q )
 )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   &    |-  O  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( X  e.  B  /\  Y  e.  B )  /\  X  .<_  Y ) 
 ->  ( F `  X )  .<_  ( F `  Y ) )
 
Theoremcdleme35a 35914 Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT (Contributed by NM, 10-Mar-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
 ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  -.  R  .<_  ( P  .\/  Q )
 )  ->  ( F  .\/  U )  =  ( R  .\/  U )
 )
 
Theoremcdleme35fnpq 35915 Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT (Contributed by NM, 19-Mar-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
 ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  -.  R  .<_  ( P  .\/  Q )
 )  ->  -.  F  .<_  ( P  .\/  Q )
 )
 
Theoremcdleme35b 35916 Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT (Contributed by NM, 10-Mar-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
 ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  -.  R  .<_  ( P  .\/  Q )
 )  ->  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
 )  .<_  ( Q  .\/  ( R  .\/  U ) ) )
 
Theoremcdleme35c 35917 Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT (Contributed by NM, 10-Mar-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
 ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  -.  R  .<_  ( P  .\/  Q )
 )  ->  ( Q  .\/  F )  =  ( Q  .\/  ( ( P  .\/  R )  ./\  W ) ) )
 
Theoremcdleme35d 35918 Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT (Contributed by NM, 10-Mar-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
 ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  -.  R  .<_  ( P  .\/  Q )
 )  ->  ( ( Q  .\/  F )  ./\  W )  =  ( ( P  .\/  R )  ./\ 
 W ) )
 
Theoremcdleme35e 35919 Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT (Contributed by NM, 10-Mar-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
 ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  -.  R  .<_  ( P  .\/  Q )
 )  ->  ( P  .\/  ( ( Q  .\/  F )  ./\  W )
 )  =  ( P 
 .\/  R ) )
 
Theoremcdleme35f 35920 Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT (Contributed by NM, 10-Mar-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
 ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  -.  R  .<_  ( P  .\/  Q )
 )  ->  ( ( R  .\/  U )  ./\  ( P  .\/  R ) )  =  R )
 
Theoremcdleme35g 35921 Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT (Contributed by NM, 10-Mar-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
 ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  -.  R  .<_  ( P  .\/  Q )
 )  ->  ( ( F  .\/  U )  ./\  ( P  .\/  ( ( Q  .\/  F )  ./\ 
 W ) ) )  =  R )
 
Theoremcdleme35h 35922 Part of proof of Lemma E in [Crawley] p. 113. Show that f(x) is one-to-one outside of  P  .\/  Q line. TODO: FIX COMMENT (Contributed by NM, 11-Mar-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
 ) )   &    |-  G  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
 ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q )  /\  F  =  G ) )  ->  R  =  S )
 
Theoremcdleme35h2 35923 Part of proof of Lemma E in [Crawley] p. 113. Show that f(x) is one-to-one outside of  P  .\/  Q line. TODO: FIX COMMENT (Contributed by NM, 18-Mar-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
 ) )   &    |-  G  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
 ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q )  /\  R  =/=  S ) )  ->  F  =/=  G )
 
Theoremcdleme35sn2aw 35924* Part of proof of Lemma E in [Crawley] p. 113. Show that f(x) is one-to-one outside of  P  .\/  Q line case; compare cdleme32sn2awN 35900. TODO: FIX COMMENT (Contributed by NM, 18-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  N  =  if ( s  .<_  ( P 
 .\/  Q ) ,  I ,  D )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q )  /\  R  =/=  S ) )  ->  [_ R  /  s ]_ N  =/=  [_ S  /  s ]_ N )
 
Theoremcdleme35sn3a 35925* Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT (Contributed by NM, 19-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  N  =  if ( s  .<_  ( P 
 .\/  Q ) ,  I ,  D )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  -.  R  .<_  ( P  .\/  Q )
 )  ->  -.  [_ R  /  s ]_ N  .<_  ( P  .\/  Q )
 )
 
Theoremcdleme36a 35926 Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT (Contributed by NM, 11-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  Q  e.  A )  /\  ( P  =/=  Q 
 /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  R  .<_  ( P  .\/  Q )
 )  /\  ( (
 t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) ) )  ->  -.  R  .<_  ( t  .\/  E ) )
 
Theoremcdleme36m 35927 Part of proof of Lemma E in [Crawley] p. 113. Show that f(x) is one-to-one on  P  .\/  Q line. TODO: FIX COMMENT (Contributed by NM, 11-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  V  =  ( ( t  .\/  E )  ./\  W )   &    |-  F  =  ( ( R  .\/  V )  ./\  ( E  .\/  ( ( t  .\/  R )  ./\  W )
 ) )   &    |-  C  =  ( ( S  .\/  V )  ./\  ( E  .\/  ( ( t  .\/  S )  ./\  W )
 ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P  .\/  Q )  /\  F  =  C ) 
 /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) ) ) ) 
 ->  R  =  S )
 
Theoremcdleme37m 35928 Part of proof of Lemma E in [Crawley] p. 113. Show that f(x) is one-to-one on  P  .\/  Q line. TODO: FIX COMMENT (Contributed by NM, 13-Mar-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  D  =  ( ( u  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  u )  ./\  W )
 ) )   &    |-  V  =  ( ( t  .\/  E )  ./\  W )   &    |-  X  =  ( ( u  .\/  D )  ./\  W )   &    |-  C  =  ( ( S  .\/  V )  ./\  ( E  .\/  ( ( t  .\/  S )  ./\  W )
 ) )   &    |-  G  =  ( ( S  .\/  X )  ./\  ( D  .\/  ( ( u  .\/  S )  ./\  W )
 ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P  .\/  Q )
 )  /\  ( (
 t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
 ( u  e.  A  /\  -.  u  .<_  W ) 
 /\  -.  u  .<_  ( P  .\/  Q )
 ) ) )  ->  C  =  G )
 
Theoremcdleme38m 35929 Part of proof of Lemma E in [Crawley] p. 113. Show that f(x) is one-to-one on  P  .\/  Q line. TODO: FIX COMMENT (Contributed by NM, 13-Mar-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  D  =  ( ( u  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  u )  ./\  W )
 ) )   &    |-  V  =  ( ( t  .\/  E )  ./\  W )   &    |-  X  =  ( ( u  .\/  D )  ./\  W )   &    |-  F  =  ( ( R  .\/  V )  ./\  ( E  .\/  ( ( t  .\/  R )  ./\  W )
 ) )   &    |-  G  =  ( ( S  .\/  X )  ./\  ( D  .\/  ( ( u  .\/  S )  ./\  W )
 ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P  .\/  Q )  /\  F  =  G ) 
 /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
 ( u  e.  A  /\  -.  u  .<_  W ) 
 /\  -.  u  .<_  ( P  .\/  Q )
 ) ) )  ->  R  =  S )
 
Theoremcdleme38n 35930 Part of proof of Lemma E in [Crawley] p. 113. Show that f(x) is one-to-one on  P  .\/  Q line. TODO: FIX COMMENT TODO shorter if proved directly from cdleme36m 35927 and cdleme37m 35928? (Contributed by NM, 14-Mar-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  D  =  ( ( u  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  u )  ./\  W )
 ) )   &    |-  V  =  ( ( t  .\/  E )  ./\  W )   &    |-  X  =  ( ( u  .\/  D )  ./\  W )   &    |-  F  =  ( ( R  .\/  V )  ./\  ( E  .\/  ( ( t  .\/  R )  ./\  W )
 ) )   &    |-  G  =  ( ( S  .\/  X )  ./\  ( D  .\/  ( ( u  .\/  S )  ./\  W )
 ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P  .\/  Q )  /\  R  =/=  S ) 
 /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
 ( u  e.  A  /\  -.  u  .<_  W ) 
 /\  -.  u  .<_  ( P  .\/  Q )
 ) ) )  ->  F  =/=  G )
 
Theoremcdleme39a 35931 Part of proof of Lemma E in [Crawley] p. 113. Show that f(x) is one-to-one on  P  .\/  Q line. TODO: FIX COMMENT.  E,  Y,  G,  Z serve as f(t), f(u), ft( R), ft( S). Put hypotheses of cdleme38n 35930 in convention of cdleme32sn1awN 35898. TODO see if this hypothesis conversion would be better if done earlier. (Contributed by NM, 15-Mar-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( R  .\/  t )  ./\  W ) ) )   &    |-  V  =  ( ( t  .\/  E )  ./\  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  P  e.  A  /\  Q  e.  A ) 
 /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R 
 .<_  ( P  .\/  Q )  /\  ( t  e.  A  /\  -.  t  .<_  W ) ) ) 
 ->  G  =  ( ( R  .\/  V )  ./\  ( E  .\/  (
 ( t  .\/  R )  ./\  W ) ) ) )
 
Theoremcdleme39n 35932 Part of proof of Lemma E in [Crawley] p. 113. Show that f(x) is one-to-one on  P  .\/  Q line. TODO: FIX COMMENT.  E,  Y,  G,  Z serve as f(t), f(u), ft( R), ft( S). Put hypotheses of cdleme38n 35930 in convention of cdleme32sn1awN 35898. TODO see if this hypothesis conversion would be better if done earlier. (Contributed by NM, 15-Mar-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( R  .\/  t )  ./\  W ) ) )   &    |-  Y  =  ( ( u  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  u )  ./\  W )
 ) )   &    |-  Z  =  ( ( P  .\/  Q )  ./\  ( Y  .\/  ( ( S  .\/  u )  ./\  W )
 ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P  .\/  Q )  /\  R  =/=  S ) 
 /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
 ( u  e.  A  /\  -.  u  .<_  W ) 
 /\  -.  u  .<_  ( P  .\/  Q )
 ) ) )  ->  G  =/=  Z )
 
Theoremcdleme40m 35933* Part of proof of Lemma E in [Crawley] p. 113. Show that f(x) is one-to-one on  P  .\/  Q line. TODO: FIX COMMENT Use proof idea from cdleme32sn1awN 35898. (Contributed by NM, 18-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W 
 /\  -.  t  .<_  ( P  .\/  Q )
 )  ->  y  =  G ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D )   &    |-  Y  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( R  .\/  t )  ./\ 
 W ) ) )   &    |-  C  =  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  Y ) )   &    |-  T  =  ( ( v  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  v )  ./\  W ) ) )   &    |-  F  =  ( ( P  .\/  Q )  ./\  ( T  .\/  ( ( S  .\/  v )  ./\  W ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P  .\/  Q )  /\  R  =/=  S ) 
 /\  ( v  e.  A  /\  -.  v  .<_  W  /\  -.  v  .<_  ( P  .\/  Q ) ) ) ) 
 ->  [_ R  /  s ]_ N  =/=  F )
 
Theoremcdleme40n 35934* Part of proof of Lemma E in [Crawley] p. 113. Show that f(x) is one-to-one on  P  .\/  Q line. TODO: FIX COMMENT TODO get rid of '.<' class? (Contributed by NM, 18-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W 
 /\  -.  t  .<_  ( P  .\/  Q )
 )  ->  y  =  G ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D )   &    |-  Y  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( R  .\/  t )  ./\ 
 W ) ) )   &    |-  C  =  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  Y ) )   &    |-  T  =  ( ( v  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  v )  ./\  W ) ) )   &    |-  F  =  ( ( P  .\/  Q )  ./\  ( T  .\/  ( ( S  .\/  v )  ./\  W ) ) )   &    |-  X  =  ( ( P  .\/  Q )  ./\  ( T  .\/  ( ( u  .\/  v )  ./\  W ) ) )   &    |-  O  =  (
 iota_ z  e.  B  A. v  e.  A  ( ( -.  v  .<_  W 
 /\  -.  v  .<_  ( P  .\/  Q )
 )  ->  z  =  X ) )   &    |-  V  =  if ( u  .<_  ( P  .\/  Q ) ,  O ,  .<  )   &    |-  Z  =  ( iota_ z  e.  B  A. v  e.  A  ( ( -.  v  .<_  W 
 /\  -.  v  .<_  ( P  .\/  Q )
 )  ->  z  =  F ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( P  =/=  Q 
 /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) 
 /\  ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P  .\/  Q )  /\  R  =/=  S ) )  ->  [_ R  /  s ]_ N  =/=  [_ S  /  u ]_ V )
 
Theoremcdleme40v 35935* Part of proof of Lemma E in [Crawley] p. 113. Change bound variables in  [_ S  /  u ]_ V (but we use  [_ R  /  u ]_ V for convenience since we have its hypotheses available) . (Contributed by NM, 18-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W 
 /\  -.  t  .<_  ( P  .\/  Q )
 )  ->  y  =  G ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D )   &    |-  D  =  ( (
 s  .\/  U )  ./\  ( Q  .\/  (
 ( P  .\/  s
 )  ./\  W ) ) )   &    |-  Y  =  ( ( u  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  u )  ./\  W )
 ) )   &    |-  T  =  ( ( v  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  v )  ./\  W ) ) )   &    |-  X  =  ( ( P  .\/  Q )  ./\  ( T  .\/  ( ( u  .\/  v )  ./\  W ) ) )   &    |-  O  =  (
 iota_ z  e.  B  A. v  e.  A  ( ( -.  v  .<_  W 
 /\  -.  v  .<_  ( P  .\/  Q )
 )  ->  z  =  X ) )   &    |-  V  =  if ( u  .<_  ( P  .\/  Q ) ,  O ,  Y )   =>    |-  ( R  e.  A  -> 
 [_ R  /  s ]_ N  =  [_ R  /  u ]_ V )
 
Theoremcdleme40w 35936* Part of proof of Lemma E in [Crawley] p. 113. Apply cdleme40v 35935 bound variable change to  [_ S  /  u ]_ V. TODO: FIX COMMENT (Contributed by NM, 19-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W 
 /\  -.  t  .<_  ( P  .\/  Q )
 )  ->  y  =  G ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D )   &    |-  D  =  ( (
 s  .\/  U )  ./\  ( Q  .\/  (
 ( P  .\/  s
 )  ./\  W ) ) )   &    |-  Y  =  ( ( u  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  u )  ./\  W )
 ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R 
 .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
 .\/  Q )  /\  R  =/=  S ) )  ->  [_ R  /  s ]_ N  =/=  [_ S  /  s ]_ N )
 
Theoremcdleme42a 35937 Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 3-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  V  =  ( ( R  .\/  S )  ./\  W )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) 
 ->  ( R  .\/  S )  =  ( R  .\/  V ) )
 
Theoremcdleme42c 35938 Part of proof of Lemma E in [Crawley] p. 113. Match  -.  x  .<_  W. (Contributed by NM, 6-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  V  =  ( ( R  .\/  S )  ./\  W )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) 
 ->  -.  ( R  .\/  V )  .<_  W )
 
Theoremcdleme42d 35939 Part of proof of Lemma E in [Crawley] p. 113. Match  ( s  .\/  ( x  ./\  W
) )  =  x. (Contributed by NM, 6-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  V  =  ( ( R  .\/  S )  ./\  W )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) 
 ->  ( R  .\/  (
 ( R  .\/  V )  ./\  W ) )  =  ( R  .\/  V ) )
 
Theoremcdleme41sn3aw 35940* Part of proof of Lemma E in [Crawley] p. 113. Show that f(r) is different on and off the  P  .\/  Q line. TODO: FIX COMMENT (Contributed by NM, 18-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W 
 /\  -.  t  .<_  ( P  .\/  Q )
 )  ->  y  =  G ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R 
 .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q )  /\  R  =/=  S ) )  ->  [_ R  /  s ]_ N  =/=  [_ S  /  s ]_ N )
 
Theoremcdleme41sn4aw 35941* Part of proof of Lemma E in [Crawley] p. 113. Show that f(r) is for on and off  P  .\/  Q line. TODO: FIX COMMENT (Contributed by NM, 19-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W 
 /\  -.  t  .<_  ( P  .\/  Q )
 )  ->  y  =  G ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( -.  R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P  .\/  Q )  /\  R  =/=  S ) )  ->  [_ R  /  s ]_ N  =/=  [_ S  /  s ]_ N )
 
Theoremcdleme41snaw 35942* Part of proof of Lemma E in [Crawley] p. 113. Show that f(r) is for combined cases; compare cdleme32snaw 35901. TODO: FIX COMMENT (Contributed by NM, 18-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W 
 /\  -.  t  .<_  ( P  .\/  Q )
 )  ->  y  =  G ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  R  =/=  S )  ->  [_ R  /  s ]_ N  =/=  [_ S  /  s ]_ N )
 
Theoremcdleme41fva11 35943* Part of proof of Lemma E in [Crawley] p. 113. Show that f(r) is one-to-one for r in W (r an atom not under w). TODO: FIX COMMENT (Contributed by NM, 19-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W 
 /\  -.  t  .<_  ( P  .\/  Q )
 )  ->  y  =  G ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D )   &    |-  O  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( P  =/=  Q 
 /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) 
 /\  R  =/=  S )  ->  ( F `  R )  =/=  ( F `  S ) )
 
Theoremcdleme42b 35944* Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 6-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W 
 /\  -.  t  .<_  ( P  .\/  Q )
 )  ->  y  =  G ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D )   &    |-  O  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( X  e.  B  /\  ( P  =/=  Q 
 /\  -.  X  .<_  W ) )  /\  (
 ( R  e.  A  /\  -.  R  .<_  W ) 
 /\  ( R  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( F `  X )  =  (
 [_ R  /  s ]_ N  .\/  ( X 
 ./\  W ) ) )
 
Theoremcdleme42e 35945* Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 8-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W 
 /\  -.  t  .<_  ( P  .\/  Q )
 )  ->  y  =  G ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D )   &    |-  O  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   &    |-  V  =  ( ( R  .\/  S )  ./\  W )   =>    |-  (
 ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  P  =/=  Q )  ->  ( F `  ( R  .\/  V ) )  =  ( [_ R  /  s ]_ N  .\/  ( ( R  .\/  V )  ./\ 
 W ) ) )
 
Theoremcdleme42f 35946* Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 8-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W 
 /\  -.  t  .<_  ( P  .\/  Q )
 )  ->  y  =  G ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D )   &    |-  O  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   &    |-  V  =  ( ( R  .\/  S )  ./\  W )   =>    |-  (
 ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  P  =/=  Q )  ->  ( F `  ( R  .\/  V ) )  =  (
 ( F `  R )  .\/  V ) )
 
Theoremcdleme42g 35947* Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 8-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W 
 /\  -.  t  .<_  ( P  .\/  Q )
 )  ->  y  =  G ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D )   &    |-  O  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   &    |-  V  =  ( ( R  .\/  S )  ./\  W )   =>    |-  (
 ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  P  =/=  Q )  ->  ( F `  ( R  .\/  S ) )  =  (
 ( F `  R )  .\/  V ) )
 
Theoremcdleme42h 35948* Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 8-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W 
 /\  -.  t  .<_  ( P  .\/  Q )
 )  ->  y  =  G ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D )   &    |-  O  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   &    |-  V  =  ( ( R  .\/  S )  ./\  W )   =>    |-  (
 ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  P  =/=  Q )  ->  ( F `  S )  .<_  ( ( F `  R ) 
 .\/  V ) )
 
Theoremcdleme42i 35949* Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 8-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W 
 /\  -.  t  .<_  ( P  .\/  Q )
 )  ->  y  =  G ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D )   &    |-  O  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   &    |-  V  =  ( ( R  .\/  S )  ./\  W )   =>    |-  (
 ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  P  =/=  Q )  ->  ( ( F `  R )  .\/  ( F `  S ) )  .<_  ( ( F `
  R )  .\/  V ) )
 
Theoremcdleme42k 35950* Part of proof of Lemma E in [Crawley] p. 113. Since F ' S =/= F'R when S =/= R (i.e. 1-1); then ( ( F ' R ) .\/ ( F ' S ) ) is 2-dim therefore = ( ( F ' R ) .\/ V ) by cdleme42i 35949 and ps-1 34941 TODO: FIX COMMENT (Contributed by NM, 20-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W 
 /\  -.  t  .<_  ( P  .\/  Q )
 )  ->  y  =  G ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D )   &    |-  O  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   &    |-  V  =  ( ( R  .\/  S )  ./\  W )   =>    |-  (
 ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  R  =/=  S )  ->  ( ( F `  R )  .\/  ( F `  S ) )  =  ( ( F `  R ) 
 .\/  V ) )
 
Theoremcdleme42ke 35951* Part of proof of Lemma E in [Crawley] p. 113. Remove  R  =/=  S condition. TODO: FIX COMMENT (Contributed by NM, 2-Apr-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W 
 /\  -.  t  .<_  ( P  .\/  Q )
 )  ->  y  =  G ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D )   &    |-  O  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   &    |-  V  =  ( ( R  .\/  S )  ./\  W )   =>    |-  (
 ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  (
 ( F `  R )  .\/  ( F `  S ) )  =  ( ( F `  R )  .\/  V ) )
 
Theoremcdleme42keg 35952* Part of proof of Lemma E in [Crawley] p. 113. Remove  P  =/=  Q condition. TODO: FIX COMMENT TODO: Use instead of cdleme42ke 35951 and even combine with it? (Contributed by NM, 22-Apr-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W 
 /\  -.  t  .<_  ( P  .\/  Q )
 )  ->  y  =  G ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D )   &    |-  O  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   &    |-  V  =  ( ( R  .\/  S )  ./\  W )   =>    |-  (
 ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  (
 ( F `  R )  .\/  ( F `  S ) )  =  ( ( F `  R )  .\/  V ) )
 
Theoremcdleme42mN 35953* Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT . f preserves join: f(r  \/ s) = f(r)  \/ s, p. 115 10th line from bottom. (Contributed by NM, 20-Mar-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W 
 /\  -.  t  .<_  ( P  .\/  Q )
 )  ->  y  =  G ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D )   &    |-  O  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( P  =/=  Q 
 /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  ( F `  ( R  .\/  S ) )  =  (
 ( F `  R )  .\/  ( F `  S ) ) )
 
Theoremcdleme42mgN 35954* Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT . f preserves join: f(r  \/ s) = f(r)  \/ s, p. 115 10th line from bottom. TODO: Use instead of cdleme42mN 35953? Combine with cdleme42mN 35953? (Contributed by NM, 20-Mar-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W 
 /\  -.  t  .<_  ( P  .\/  Q )
 )  ->  y  =  G ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D )   &    |-  O  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  ( F `  ( R  .\/  S ) )  =  ( ( F `  R )  .\/  ( F `  S ) ) )
 
Theoremcdleme43aN 35955 Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT p. 115 penultimate line: g(f(r)) = (p v q) ^ (g(s) v v1) (Contributed by NM, 20-Mar-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  X  =  ( ( Q  .\/  P )  ./\  W )   &    |-  C  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
 ) )   &    |-  Z  =  ( ( P  .\/  Q )  ./\  ( C  .\/  ( ( R  .\/  S )  ./\  W )
 ) )   &    |-  D  =  ( ( S  .\/  X )  ./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
 ) )   &    |-  G  =  ( ( Q  .\/  P )  ./\  ( D  .\/  ( ( Z  .\/  S )  ./\  W )
 ) )   &    |-  E  =  ( ( D  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  D )  ./\  W )
 ) )   &    |-  V  =  ( ( Z  .\/  S )  ./\  W )   &    |-  Y  =  ( ( R  .\/  D )  ./\  W )   =>    |-  (
 ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  G  =  ( ( P  .\/  Q )  ./\  ( D  .\/  V ) ) )
 
Theoremcdleme43bN 35956 Lemma for Lemma E in [Crawley] p. 113. g(s) is an atom not under w. (Contributed by NM, 20-Mar-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  X  =  ( ( Q  .\/  P )  ./\  W )   &    |-  C  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
 ) )   &    |-  Z  =  ( ( P  .\/  Q )  ./\  ( C  .\/  ( ( R  .\/  S )  ./\  W )
 ) )   &    |-  D  =  ( ( S  .\/  X )  ./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
 ) )   &    |-  G  =  ( ( Q  .\/  P )  ./\  ( D  .\/  ( ( Z  .\/  S )  ./\  W )
 ) )   &    |-  E  =  ( ( D  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  D )  ./\  W )
 ) )   &    |-  V  =  ( ( Z  .\/  S )  ./\  W )   &    |-  Y  =  ( ( R  .\/  D )  ./\  W )   =>    |-  (
 ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) 
 /\  -.  S  .<_  ( P  .\/  Q )
 )  ->  ( D  e.  A  /\  -.  D  .<_  W ) )
 
Theoremcdleme43cN 35957 Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT p. 115 last line: r v g(s) = r v v2 (Contributed by NM, 20-Mar-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  X  =  ( ( Q  .\/  P )  ./\  W )   &    |-  C  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
 ) )   &    |-  Z  =  ( ( P  .\/  Q )  ./\  ( C  .\/  ( ( R  .\/  S )  ./\  W )
 ) )   &    |-  D  =  ( ( S  .\/  X )  ./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
 ) )   &    |-  G  =  ( ( Q  .\/  P )  ./\  ( D  .\/  ( ( Z  .\/  S )  ./\  W )
 ) )   &    |-  E  =  ( ( D  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  D )  ./\  W )
 ) )   &    |-  V  =  ( ( Z  .\/  S )  ./\  W )   &    |-  Y  =  ( ( R  .\/  D )  ./\  W )   =>    |-  (
 ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q ) )  ->  ( R 
 .\/  D )  =  ( R  .\/  Y )
 )
 
Theorem