HomeHome Metamath Proof Explorer
Theorem List (p. 353 of 411)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-26652)
  Hilbert Space Explorer  Hilbert Space Explorer
(26653-28175)
  Users' Mathboxes  Users' Mathboxes
(28176-41046)
 

Theorem List for Metamath Proof Explorer - 35201-35300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremlcfrlem20 35201 Lemma for lcfr 35224. (Contributed by NM, 11-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  ( ph  ->  -.  X  e.  (  ._|_  ` 
 { ( X  .+  Y ) } )
 )   =>    |-  ( ph  ->  (
 ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )  e.  A )
 
Theoremlcfrlem21 35202 Lemma for lcfr 35224. (Contributed by NM, 11-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   =>    |-  ( ph  ->  (
 ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )  e.  A )
 
Theoremlcfrlem22 35203 Lemma for lcfr 35224. (Contributed by NM, 24-Feb-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   =>    |-  ( ph  ->  B  e.  A )
 
Theoremlcfrlem23 35204 Lemma for lcfr 35224. TODO: this proof was built from other proof pieces that may change  N `  { X ,  Y } into subspace sum and back unnecessarily, or similar things. (Contributed by NM, 1-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .(+)  =  ( LSSum `  U )   =>    |-  ( ph  ->  (
 (  ._|_  `  { X ,  Y } )  .(+)  B )  =  (  ._|_  `  { ( X  .+  Y ) }
 ) )
 
Theoremlcfrlem24 35205* Lemma for lcfr 35224. (Contributed by NM, 24-Feb-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  L  =  (LKer `  U )   =>    |-  ( ph  ->  (  ._|_  `  { X ,  Y } )  =  ( ( L `  ( J `  X ) )  i^i  ( L `  ( J `  Y ) ) ) )
 
Theoremlcfrlem25 35206* Lemma for lcfr 35224. Special case of lcfrlem35 35216 when  ( ( J `
 Y ) `  I ) is zero. (Contributed by NM, 11-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  ( ph  ->  ( ( J `  Y ) `  I )  =  Q )   &    |-  ( ph  ->  I  =/=  .0.  )   =>    |-  ( ph  ->  ( 
 ._|_  `  { ( X 
 .+  Y ) }
 )  =  ( L `
  ( J `  Y ) ) )
 
Theoremlcfrlem26 35207* Lemma for lcfr 35224. Special case of lcfrlem36 35217 when  ( ( J `
 Y ) `  I ) is zero. (Contributed by NM, 11-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  ( ph  ->  ( ( J `  Y ) `  I )  =  Q )   &    |-  ( ph  ->  I  =/=  .0.  )   =>    |-  ( ph  ->  ( X  .+  Y )  e.  (  ._|_  `  ( L `  ( J `  Y ) ) ) )
 
Theoremlcfrlem27 35208* Lemma for lcfr 35224. Special case of lcfrlem37 35218 when  ( ( J `
 Y ) `  I ) is zero. (Contributed by NM, 11-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  ( ph  ->  ( ( J `  Y ) `  I )  =  Q )   &    |-  ( ph  ->  I  =/=  .0.  )   &    |-  ( ph  ->  G  e.  ( LSubSp `
  D ) )   &    |-  ( ph  ->  G  C_  { f  e.  (LFnl `  U )  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) } )   &    |-  E  =  U_ g  e.  G  (  ._|_  `  ( L `  g ) )   &    |-  ( ph  ->  X  e.  E )   &    |-  ( ph  ->  Y  e.  E )   =>    |-  ( ph  ->  ( X  .+  Y )  e.  E )
 
Theoremlcfrlem28 35209* Lemma for lcfr 35224. TODO: This can be a hypothesis since the zero version of  ( J `  Y ) `  I needs it. (Contributed by NM, 9-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  ( ph  ->  ( ( J `  Y ) `  I )  =/= 
 Q )   =>    |-  ( ph  ->  I  =/=  .0.  )
 
Theoremlcfrlem29 35210* Lemma for lcfr 35224. (Contributed by NM, 9-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  ( ph  ->  ( ( J `  Y ) `  I )  =/= 
 Q )   &    |-  F  =  (
 invr `  S )   =>    |-  ( ph  ->  ( ( F `  (
 ( J `  Y ) `  I ) ) ( .r `  S ) ( ( J `
  X ) `  I ) )  e.  R )
 
Theoremlcfrlem30 35211* Lemma for lcfr 35224. (Contributed by NM, 6-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  ( ph  ->  ( ( J `  Y ) `  I )  =/= 
 Q )   &    |-  F  =  (
 invr `  S )   &    |-  .-  =  ( -g `  D )   &    |-  C  =  ( ( J `  X )  .-  ( ( ( F `
  ( ( J `
  Y ) `  I ) ) ( .r `  S ) ( ( J `  X ) `  I
 ) ) ( .s
 `  D ) ( J `  Y ) ) )   =>    |-  ( ph  ->  C  e.  (LFnl `  U )
 )
 
Theoremlcfrlem31 35212* Lemma for lcfr 35224. (Contributed by NM, 10-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  ( ph  ->  ( ( J `  Y ) `  I )  =/= 
 Q )   &    |-  F  =  (
 invr `  S )   &    |-  .-  =  ( -g `  D )   &    |-  C  =  ( ( J `  X )  .-  ( ( ( F `
  ( ( J `
  Y ) `  I ) ) ( .r `  S ) ( ( J `  X ) `  I
 ) ) ( .s
 `  D ) ( J `  Y ) ) )   &    |-  ( ph  ->  ( ( J `  X ) `  I )  =/= 
 Q )   &    |-  ( ph  ->  C  =  ( 0g `  D ) )   =>    |-  ( ph  ->  ( N `  { X } )  =  ( N `  { Y }
 ) )
 
Theoremlcfrlem32 35213* Lemma for lcfr 35224. (Contributed by NM, 10-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  ( ph  ->  ( ( J `  Y ) `  I )  =/= 
 Q )   &    |-  F  =  (
 invr `  S )   &    |-  .-  =  ( -g `  D )   &    |-  C  =  ( ( J `  X )  .-  ( ( ( F `
  ( ( J `
  Y ) `  I ) ) ( .r `  S ) ( ( J `  X ) `  I
 ) ) ( .s
 `  D ) ( J `  Y ) ) )   &    |-  ( ph  ->  ( ( J `  X ) `  I )  =/= 
 Q )   =>    |-  ( ph  ->  C  =/=  ( 0g `  D ) )
 
Theoremlcfrlem33 35214* Lemma for lcfr 35224. (Contributed by NM, 10-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  ( ph  ->  ( ( J `  Y ) `  I )  =/= 
 Q )   &    |-  F  =  (
 invr `  S )   &    |-  .-  =  ( -g `  D )   &    |-  C  =  ( ( J `  X )  .-  ( ( ( F `
  ( ( J `
  Y ) `  I ) ) ( .r `  S ) ( ( J `  X ) `  I
 ) ) ( .s
 `  D ) ( J `  Y ) ) )   &    |-  ( ph  ->  ( ( J `  X ) `  I )  =  Q )   =>    |-  ( ph  ->  C  =/=  ( 0g `  D ) )
 
Theoremlcfrlem34 35215* Lemma for lcfr 35224. (Contributed by NM, 10-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  ( ph  ->  ( ( J `  Y ) `  I )  =/= 
 Q )   &    |-  F  =  (
 invr `  S )   &    |-  .-  =  ( -g `  D )   &    |-  C  =  ( ( J `  X )  .-  ( ( ( F `
  ( ( J `
  Y ) `  I ) ) ( .r `  S ) ( ( J `  X ) `  I
 ) ) ( .s
 `  D ) ( J `  Y ) ) )   =>    |-  ( ph  ->  C  =/=  ( 0g `  D ) )
 
Theoremlcfrlem35 35216* Lemma for lcfr 35224. (Contributed by NM, 2-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  ( ph  ->  ( ( J `  Y ) `  I )  =/= 
 Q )   &    |-  F  =  (
 invr `  S )   &    |-  .-  =  ( -g `  D )   &    |-  C  =  ( ( J `  X )  .-  ( ( ( F `
  ( ( J `
  Y ) `  I ) ) ( .r `  S ) ( ( J `  X ) `  I
 ) ) ( .s
 `  D ) ( J `  Y ) ) )   =>    |-  ( ph  ->  (  ._|_  `  { ( X 
 .+  Y ) }
 )  =  ( L `
  C ) )
 
Theoremlcfrlem36 35217* Lemma for lcfr 35224. (Contributed by NM, 6-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  ( ph  ->  ( ( J `  Y ) `  I )  =/= 
 Q )   &    |-  F  =  (
 invr `  S )   &    |-  .-  =  ( -g `  D )   &    |-  C  =  ( ( J `  X )  .-  ( ( ( F `
  ( ( J `
  Y ) `  I ) ) ( .r `  S ) ( ( J `  X ) `  I
 ) ) ( .s
 `  D ) ( J `  Y ) ) )   =>    |-  ( ph  ->  ( X  .+  Y )  e.  (  ._|_  `  ( L `
  C ) ) )
 
Theoremlcfrlem37 35218* Lemma for lcfr 35224. (Contributed by NM, 8-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  ( ph  ->  ( ( J `  Y ) `  I )  =/= 
 Q )   &    |-  F  =  (
 invr `  S )   &    |-  .-  =  ( -g `  D )   &    |-  C  =  ( ( J `  X )  .-  ( ( ( F `
  ( ( J `
  Y ) `  I ) ) ( .r `  S ) ( ( J `  X ) `  I
 ) ) ( .s
 `  D ) ( J `  Y ) ) )   &    |-  ( ph  ->  G  e.  ( LSubSp `  D ) )   &    |-  ( ph  ->  G 
 C_  { f  e.  (LFnl `  U )  |  ( 
 ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `
  f ) }
 )   &    |-  E  =  U_ g  e.  G  (  ._|_  `  ( L `  g ) )   &    |-  ( ph  ->  X  e.  E )   &    |-  ( ph  ->  Y  e.  E )   =>    |-  ( ph  ->  ( X  .+  Y )  e.  E )
 
Theoremlcfrlem38 35219* Lemma for lcfr 35224. Combine lcfrlem27 35208 and lcfrlem37 35218. (Contributed by NM, 11-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .+  =  ( +g  `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Q  =  ( LSubSp `  D )   &    |-  C  =  { f  e.  (LFnl `  U )  |  ( 
 ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `
  f ) }   &    |-  E  =  U_ g  e.  G  (  ._|_  `  ( L `  g ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  G  e.  Q )   &    |-  ( ph  ->  G  C_  C )   &    |-  ( ph  ->  X  e.  E )   &    |-  ( ph  ->  Y  e.  E )   &    |-  .0.  =  ( 0g `  U )   &    |-  ( ph  ->  X  =/=  .0.  )   &    |-  ( ph  ->  Y  =/=  .0.  )   &    |-  N  =  ( LSpan `  U )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )   &    |-  B  =  ( ( N `  { X ,  Y }
 )  i^i  (  ._|_  ` 
 { ( X  .+  Y ) } )
 )   &    |-  ( ph  ->  I  e.  B )   &    |-  ( ph  ->  I  =/=  .0.  )   &    |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   =>    |-  ( ph  ->  ( X  .+  Y )  e.  E )
 
Theoremlcfrlem39 35220* Lemma for lcfr 35224. Eliminate  J. (Contributed by NM, 11-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .+  =  ( +g  `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Q  =  ( LSubSp `  D )   &    |-  C  =  { f  e.  (LFnl `  U )  |  ( 
 ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `
  f ) }   &    |-  E  =  U_ g  e.  G  (  ._|_  `  ( L `  g ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  G  e.  Q )   &    |-  ( ph  ->  G  C_  C )   &    |-  ( ph  ->  X  e.  E )   &    |-  ( ph  ->  Y  e.  E )   &    |-  .0.  =  ( 0g `  U )   &    |-  ( ph  ->  X  =/=  .0.  )   &    |-  ( ph  ->  Y  =/=  .0.  )   &    |-  N  =  ( LSpan `  U )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )   &    |-  B  =  ( ( N `  { X ,  Y }
 )  i^i  (  ._|_  ` 
 { ( X  .+  Y ) } )
 )   &    |-  ( ph  ->  I  e.  B )   &    |-  ( ph  ->  I  =/=  .0.  )   =>    |-  ( ph  ->  ( X  .+  Y )  e.  E )
 
Theoremlcfrlem40 35221* Lemma for lcfr 35224. Eliminate  B and  I. (Contributed by NM, 11-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .+  =  ( +g  `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Q  =  ( LSubSp `  D )   &    |-  C  =  { f  e.  (LFnl `  U )  |  ( 
 ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `
  f ) }   &    |-  E  =  U_ g  e.  G  (  ._|_  `  ( L `  g ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  G  e.  Q )   &    |-  ( ph  ->  G  C_  C )   &    |-  ( ph  ->  X  e.  E )   &    |-  ( ph  ->  Y  e.  E )   &    |-  .0.  =  ( 0g `  U )   &    |-  ( ph  ->  X  =/=  .0.  )   &    |-  ( ph  ->  Y  =/=  .0.  )   &    |-  N  =  ( LSpan `  U )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )   =>    |-  ( ph  ->  ( X  .+  Y )  e.  E )
 
Theoremlcfrlem41 35222* Lemma for lcfr 35224. Eliminate span condition. (Contributed by NM, 11-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .+  =  ( +g  `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Q  =  ( LSubSp `  D )   &    |-  C  =  { f  e.  (LFnl `  U )  |  ( 
 ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `
  f ) }   &    |-  E  =  U_ g  e.  G  (  ._|_  `  ( L `  g ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  G  e.  Q )   &    |-  ( ph  ->  G  C_  C )   &    |-  ( ph  ->  X  e.  E )   &    |-  ( ph  ->  Y  e.  E )   &    |-  .0.  =  ( 0g `  U )   &    |-  ( ph  ->  X  =/=  .0.  )   &    |-  ( ph  ->  Y  =/=  .0.  )   =>    |-  ( ph  ->  ( X  .+  Y )  e.  E )
 
Theoremlcfrlem42 35223* Lemma for lcfr 35224. Eliminate nonzero condition. (Contributed by NM, 11-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .+  =  ( +g  `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Q  =  ( LSubSp `  D )   &    |-  C  =  { f  e.  (LFnl `  U )  |  ( 
 ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `
  f ) }   &    |-  E  =  U_ g  e.  G  (  ._|_  `  ( L `  g ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  G  e.  Q )   &    |-  ( ph  ->  G  C_  C )   &    |-  ( ph  ->  X  e.  E )   &    |-  ( ph  ->  Y  e.  E )   =>    |-  ( ph  ->  ( X  .+  Y )  e.  E )
 
Theoremlcfr 35224* Reconstruction of a subspace from a dual subspace of functionals with closed kernels. Our proof was suggested by Mario Carneiro, 20-Feb-2015. (Contributed by NM, 5-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  T  =  ( LSubSp `  D )   &    |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }   &    |-  Q  =  U_ g  e.  R  (  ._|_  `  ( L `  g ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  R  e.  T )   &    |-  ( ph  ->  R  C_  C )   =>    |-  ( ph  ->  Q  e.  S )
 
Syntaxclcd 35225 Extend class notation with vector space of functionals with closed kernels.
 class LCDual
 
Definitiondf-lcdual 35226* Dual vector space of functionals with closed kernels. Note: we could also define this directly without mapd by using mapdrn 35288. TODO: see if it makes sense to go back and replace some of the LDual stuff with this. TODO: We could simplify df-mapd 35264 using  ( Base `  (
(LCDual `  K ) `  W ) ). (Contributed by NM, 13-Mar-2015.)
 |- LCDual  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k )  |->  ( (LDual `  ( ( DVecH `  k
 ) `  w )
 )s  { f  e.  (LFnl `  ( ( DVecH `  k
 ) `  w )
 )  |  ( ( ( ocH `  k
 ) `  w ) `  ( ( ( ocH `  k ) `  w ) `  ( (LKer `  ( ( DVecH `  k
 ) `  w )
 ) `  f )
 ) )  =  ( (LKer `  ( ( DVecH `  k ) `  w ) ) `  f ) } )
 ) )
 
Theoremlcdfval 35227* Dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.)
 |-  H  =  ( LHyp `  K )   =>    |-  ( K  e.  X  ->  (LCDual `  K )  =  ( w  e.  H  |->  ( (LDual `  ( ( DVecH `  K ) `  w ) )s  { f  e.  (LFnl `  ( ( DVecH `  K ) `  w ) )  |  ( ( ( ocH `  K ) `  w ) `  ( ( ( ocH `  K ) `  w ) `  (
 (LKer `  ( ( DVecH `  K ) `  w ) ) `  f ) ) )  =  ( (LKer `  ( ( DVecH `  K ) `  w ) ) `
  f ) }
 ) ) )
 
Theoremlcdval 35228* Dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  ( ph  ->  ( K  e.  X  /\  W  e.  H ) )   =>    |-  ( ph  ->  C  =  ( Ds  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) } )
 )
 
Theoremlcdval2 35229* Dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  ( ph  ->  ( K  e.  X  /\  W  e.  H ) )   &    |-  B  =  {
 f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `
  f ) }   =>    |-  ( ph  ->  C  =  ( Ds  B ) )
 
Theoremlcdlvec 35230 The dual vector space of functionals with closed kernels is a left vector space. (Contributed by NM, 14-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  C  e.  LVec )
 
Theoremlcdlmod 35231 The dual vector space of functionals with closed kernels is a left module. (Contributed by NM, 13-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  C  e.  LMod )
 
Theoremlcdvbase 35232* Vector base set of a dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  V  =  ( Base `  C )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  B  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  V  =  B )
 
Theoremlcdvbasess 35233 The vector base set of the closed kernel dual space is a set of functionals. (Contributed by NM, 15-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  V  =  ( Base `  C )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  F  =  (LFnl `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  V  C_  F )
 
Theoremlcdvbaselfl 35234 A vector in the base set of the closed kernel dual space is a functional. (Contributed by NM, 28-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  V  =  ( Base `  C )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  F  =  (LFnl `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  V )   =>    |-  ( ph  ->  X  e.  F )
 
Theoremlcdvbasecl 35235 Closure of the value of a vector (functional) in the closed kernel dual space. (Contributed by NM, 28-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  S  =  (Scalar `  U )   &    |-  R  =  ( Base `  S )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  E  =  ( Base `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  E )   &    |-  ( ph  ->  X  e.  V )   =>    |-  ( ph  ->  ( F `  X )  e.  R )
 
Theoremlcdvadd 35236 Vector addition for the closed kernel vector space dual. (Contributed by NM, 10-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .+b  =  ( +g  `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  .+b  =  .+  )
 
Theoremlcdvaddval 35237 The value of the value of vector addition in the closed kernel vector space dual. (Contributed by NM, 10-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  R  =  (Scalar `  U )   &    |-  .+  =  ( +g  `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  .+b  =  ( +g  `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  G  e.  D )   &    |-  ( ph  ->  X  e.  V )   =>    |-  ( ph  ->  (
 ( F  .+b  G ) `
  X )  =  ( ( F `  X )  .+  ( G `
  X ) ) )
 
Theoremlcdsca 35238 The ring of scalars of the closed kernel dual space. (Contributed by NM, 16-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  F  =  (Scalar `  U )   &    |-  O  =  (oppr `  F )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  R  =  (Scalar `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   =>    |-  ( ph  ->  R  =  O )
 
Theoremlcdsbase 35239 Base set of scalar ring for the closed kernel dual of a vector space. (Contributed by NM, 18-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  F  =  (Scalar `  U )   &    |-  L  =  ( Base `  F )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  S  =  (Scalar `  C )   &    |-  R  =  ( Base `  S )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  R  =  L )
 
Theoremlcdsadd 35240 Scalar addition for the closed kernel vector space dual. (Contributed by NM, 6-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  F  =  (Scalar `  U )   &    |-  .+  =  ( +g  `  F )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  S  =  (Scalar `  C )   &    |-  .+b  =  ( +g  `  S )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  .+b  =  .+  )
 
Theoremlcdsmul 35241 Scalar multiplication for the closed kernel vector space dual. (Contributed by NM, 20-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  F  =  (Scalar `  U )   &    |-  L  =  ( Base `  F )   &    |-  .x.  =  ( .r `  F )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  S  =  (Scalar `  C )   &    |-  .xb  =  ( .r `  S )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  L )   &    |-  ( ph  ->  Y  e.  L )   =>    |-  ( ph  ->  ( X  .xb  Y )  =  ( Y  .x.  X ) )
 
Theoremlcdvs 35242 Scalar product for the closed kernel vector space dual. (Contributed by NM, 28-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  D  =  (LDual `  U )   &    |-  .x.  =  ( .s `  D )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .xb  =  ( .s `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   =>    |-  ( ph  ->  .xb  =  .x.  )
 
Theoremlcdvsval 35243 Value of scalar product operation value for the closed kernel vector space dual. (Contributed by NM, 28-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  S  =  (Scalar `  U )   &    |-  R  =  ( Base `  S )   &    |-  .x.  =  ( .r `  S )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  F  =  ( Base `  C )   &    |-  .xb  =  ( .s `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  R )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  A  e.  V )   =>    |-  ( ph  ->  (
 ( X  .xb  G ) `
  A )  =  ( ( G `  A )  .x.  X ) )
 
Theoremlcdvscl 35244 The scalar product operation value is a functional. (Contributed by NM, 20-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  (Scalar `  U )   &    |-  R  =  ( Base `  S )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  V  =  ( Base `  C )   &    |-  .x.  =  ( .s `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  R )   &    |-  ( ph  ->  G  e.  V )   =>    |-  ( ph  ->  ( X  .x.  G )  e.  V )
 
Theoremlcdlssvscl 35245 Closure of scalar product in a closed kernel dual vector space. (Contributed by NM, 20-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  F  =  (Scalar `  U )   &    |-  R  =  ( Base `  F )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  V  =  ( Base `  C )   &    |-  .x.  =  ( .s `  C )   &    |-  S  =  ( LSubSp `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  L  e.  S )   &    |-  ( ph  ->  X  e.  R )   &    |-  ( ph  ->  Y  e.  L )   =>    |-  ( ph  ->  ( X  .x.  Y )  e.  L )
 
Theoremlcdvsass 35246 Associative law for scalar product in a closed kernel dual vector space. (Contributed by NM, 20-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  R  =  (Scalar `  U )   &    |-  L  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  F  =  ( Base `  C )   &    |-  .xb  =  ( .s `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  L )   &    |-  ( ph  ->  Y  e.  L )   &    |-  ( ph  ->  G  e.  F )   =>    |-  ( ph  ->  (
 ( Y  .x.  X )  .xb  G )  =  ( X  .xb  ( Y  .xb  G ) ) )
 
Theoremlcd0 35247 The zero scalar of the closed kernel dual of a vector space. (Contributed by NM, 20-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  F  =  (Scalar `  U )   &    |-  .0.  =  ( 0g `  F )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  S  =  (Scalar `  C )   &    |-  O  =  ( 0g
 `  S )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  O  =  .0.  )
 
Theoremlcd1 35248 The unit scalar of the closed kernel dual of a vector space. (Contributed by NM, 20-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  F  =  (Scalar `  U )   &    |-  .1.  =  ( 1r `  F )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  S  =  (Scalar `  C )   &    |-  I  =  ( 1r
 `  S )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  I  =  .1.  )
 
Theoremlcdneg 35249 The unit scalar of the closed kernel dual of a vector space. (Contributed by NM, 11-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  R  =  (Scalar `  U )   &    |-  M  =  ( invg `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  S  =  (Scalar `  C )   &    |-  N  =  ( invg `  S )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  N  =  M )
 
Theoremlcd0v 35250 The zero functional in the set of functionals with closed kernels. (Contributed by NM, 20-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  R  =  (Scalar `  U )   &    |-  .0.  =  ( 0g `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  O  =  ( 0g
 `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  O  =  ( V  X.  {  .0.  } ) )
 
Theoremlcd0v2 35251 The zero functional in the set of functionals with closed kernels. (Contributed by NM, 27-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  D  =  (LDual `  U )   &    |-  .0.  =  ( 0g `  D )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  O  =  ( 0g
 `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  O  =  .0.  )
 
Theoremlcd0vvalN 35252 Value of the zero functional at any vector. (Contributed by NM, 28-Mar-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  S  =  (Scalar `  U )   &    |-  .0.  =  ( 0g `  S )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  O  =  ( 0g
 `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  V )   =>    |-  ( ph  ->  ( O `  X )  =  .0.  )
 
Theoremlcd0vcl 35253 Closure of the zero functional in the set of functionals with closed kernels. (Contributed by NM, 15-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  V  =  ( Base `  C )   &    |-  O  =  ( 0g `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  O  e.  V )
 
Theoremlcd0vs 35254 A scalar zero times a functional is the zero functional. (Contributed by NM, 20-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  R  =  (Scalar `  U )   &    |-  .0.  =  ( 0g `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  V  =  ( Base `  C )   &    |-  .x.  =  ( .s `  C )   &    |-  O  =  ( 0g `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  G  e.  V )   =>    |-  ( ph  ->  (  .0.  .x.  G )  =  O )
 
Theoremlcdvs0N 35255 A scalar times the zero functional is the zero functional. (Contributed by NM, 20-Mar-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  (Scalar `  U )   &    |-  R  =  ( Base `  S )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .x.  =  ( .s `  C )   &    |-  .0.  =  ( 0g `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  R )   =>    |-  ( ph  ->  ( X  .x.  .0.  )  =  .0.  )
 
Theoremlcdvsub 35256 The value of vector subtraction in the closed kernel dual space. (Contributed by NM, 22-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  (Scalar `  U )   &    |-  N  =  ( invg `  S )   &    |-  .1.  =  ( 1r `  S )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  V  =  ( Base `  C )   &    |-  .+  =  ( +g  `  C )   &    |-  .x.  =  ( .s `  C )   &    |-  .-  =  ( -g `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  G  e.  V )   =>    |-  ( ph  ->  ( F  .-  G )  =  ( F  .+  (
 ( N `  .1.  )  .x.  G ) ) )
 
Theoremlcdvsubval 35257 The value of the value of vector addition in the closed kernel vector space dual. (Contributed by NM, 11-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  R  =  (Scalar `  U )   &    |-  S  =  ( -g `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  .-  =  ( -g `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  G  e.  D )   &    |-  ( ph  ->  X  e.  V )   =>    |-  ( ph  ->  (
 ( F  .-  G ) `  X )  =  ( ( F `  X ) S ( G `  X ) ) )
 
Theoremlcdlss 35258* Subspaces of a dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  S  =  ( LSubSp `  C )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  T  =  ( LSubSp `  D )   &    |-  B  =  { f  e.  F  |  ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  S  =  ( T  i^i  ~P B ) )
 
Theoremlcdlss2N 35259 Subspaces of a dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  S  =  ( LSubSp `  C )   &    |-  V  =  ( Base `  C )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  D  =  (LDual `  U )   &    |-  T  =  ( LSubSp `  D )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  S  =  ( T  i^i  ~P V ) )
 
Theoremlcdlsp 35260 Span in the set of functionals with closed kernels. (Contributed by NM, 28-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  D  =  (LDual `  U )   &    |-  M  =  ( LSpan `  D )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  F  =  ( Base `  C )   &    |-  N  =  ( LSpan `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  G 
 C_  F )   =>    |-  ( ph  ->  ( N `  G )  =  ( M `  G ) )
 
TheoremlcdlkreqN 35261 Colinear functionals have equal kernels. (Contributed by NM, 28-Mar-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  L  =  (LKer `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .0.  =  ( 0g `  C )   &    |-  N  =  ( LSpan `  C )   &    |-  V  =  (
 Base `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  I  e.  V )   &    |-  ( ph  ->  G  e.  ( N `  { I }
 ) )   &    |-  ( ph  ->  G  =/=  .0.  )   =>    |-  ( ph  ->  ( L `  G )  =  ( L `  I ) )
 
Theoremlcdlkreq2N 35262 Colinear functionals have equal kernels. (Contributed by NM, 28-Mar-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  (Scalar `  U )   &    |-  R  =  ( Base `  S )   &    |-  .0.  =  ( 0g `  S )   &    |-  L  =  (LKer `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  V  =  (
 Base `  C )   &    |-  .x.  =  ( .s `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  A  e.  ( R  \  {  .0.  }
 ) )   &    |-  ( ph  ->  I  e.  V )   &    |-  ( ph  ->  G  =  ( A  .x.  I )
 )   =>    |-  ( ph  ->  ( L `  G )  =  ( L `  I
 ) )
 
Syntaxcmpd 35263 Extend class notation with projectivity from subspaces of vector space H to subspaces of functionals with closed kernels.
 class mapd
 
Definitiondf-mapd 35264* Extend class notation with a one-to-one onto (mapd1o 35287), order-preserving (mapdord 35277) map, called a projectivity (definition of projectivity in [Baer] p. 40), from subspaces of vector space H to those subspaces of the dual space having functionals with closed kernels. (Contributed by NM, 25-Jan-2015.)
 |- mapd  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k )  |->  ( s  e.  ( LSubSp `  (
 ( DVecH `  k ) `  w ) )  |->  { f  e.  (LFnl `  ( ( DVecH `  k
 ) `  w )
 )  |  ( ( ( ( ocH `  k
 ) `  w ) `  ( ( ( ocH `  k ) `  w ) `  ( (LKer `  ( ( DVecH `  k
 ) `  w )
 ) `  f )
 ) )  =  ( (LKer `  ( ( DVecH `  k ) `  w ) ) `  f )  /\  ( ( ( ocH `  k
 ) `  w ) `  ( (LKer `  (
 ( DVecH `  k ) `  w ) ) `  f ) )  C_  s ) } )
 ) )
 
Theoremmapdffval 35265* Projectivity from vector space H to dual space. (Contributed by NM, 25-Jan-2015.)
 |-  H  =  ( LHyp `  K )   =>    |-  ( K  e.  X  ->  (mapd `  K )  =  ( w  e.  H  |->  ( s  e.  ( LSubSp `  ( ( DVecH `  K ) `  w ) ) 
 |->  { f  e.  (LFnl `  ( ( DVecH `  K ) `  w ) )  |  ( ( ( ( ocH `  K ) `  w ) `  ( ( ( ocH `  K ) `  w ) `  ( (LKer `  ( ( DVecH `  K ) `  w ) ) `
  f ) ) )  =  ( (LKer `  ( ( DVecH `  K ) `  w ) ) `
  f )  /\  ( ( ( ocH `  K ) `  w ) `  ( (LKer `  ( ( DVecH `  K ) `  w ) ) `
  f ) ) 
 C_  s ) }
 ) ) )
 
Theoremmapdfval 35266* Projectivity from vector space H to dual space. (Contributed by NM, 25-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  M  =  ( (mapd `  K ) `  W )   =>    |-  ( ( K  e.  X  /\  W  e.  H )  ->  M  =  ( s  e.  S  |->  { f  e.  F  |  ( ( O `  ( O `  ( L `
  f ) ) )  =  ( L `
  f )  /\  ( O `  ( L `
  f ) ) 
 C_  s ) }
 ) )
 
Theoremmapdval 35267* Value of projectivity from vector space H to dual space. (Contributed by NM, 27-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  X  /\  W  e.  H ) )   &    |-  ( ph  ->  T  e.  S )   =>    |-  ( ph  ->  ( M `  T )  =  { f  e.  F  |  ( ( O `  ( O `
  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `
  ( L `  f ) )  C_  T ) } )
 
Theoremmapdvalc 35268* Value of projectivity from vector space H to dual space. (Contributed by NM, 27-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  X  /\  W  e.  H ) )   &    |-  ( ph  ->  T  e.  S )   &    |-  C  =  { g  e.  F  |  ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g ) }   =>    |-  ( ph  ->  ( M `  T )  =  { f  e.  C  |  ( O `
  ( L `  f ) )  C_  T } )
 
Theoremmapdval2N 35269* Value of projectivity from vector space H to dual space. (Contributed by NM, 31-Jan-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  T  e.  S )   &    |-  C  =  { g  e.  F  |  ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g ) }   =>    |-  ( ph  ->  ( M `  T )  =  { f  e.  C  |  E. v  e.  T  ( O `  ( L `  f ) )  =  ( N `
  { v }
 ) } )
 
Theoremmapdval3N 35270* Value of projectivity from vector space H to dual space. (Contributed by NM, 31-Jan-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  T  e.  S )   &    |-  C  =  { g  e.  F  |  ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g ) }   =>    |-  ( ph  ->  ( M `  T )  =  U_ v  e.  T  { f  e.  C  |  ( O `
  ( L `  f ) )  =  ( N `  { v } ) } )
 
Theoremmapdval4N 35271* Value of projectivity from vector space H to dual space. TODO: 1. This is shorter than others - make it the official def? (but is not as obvious that it is  C_  C) 2. The unneeded direction of lcfl8a 35142 has awkward  E.- add another thm with only one direction of it? 3. Swap  O `  {
v } and  L `  f? (Contributed by NM, 31-Jan-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  T  e.  S )   =>    |-  ( ph  ->  ( M `  T )  =  { f  e.  F  |  E. v  e.  T  ( O `  { v } )  =  ( L `  f
 ) } )
 
Theoremmapdval5N 35272* Value of projectivity from vector space H to dual space. (Contributed by NM, 31-Jan-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  T  e.  S )   =>    |-  ( ph  ->  ( M `  T )  =  U_ v  e.  T  { f  e.  F  |  ( O `
  { v }
 )  =  ( L `
  f ) }
 )
 
Theoremmapdordlem1a 35273* Lemma for mapdord 35277. (Contributed by NM, 27-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  Y  =  (LSHyp `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  T  =  { g  e.  F  |  ( O `  ( O `  ( L `  g ) ) )  e.  Y }   &    |-  C  =  { g  e.  F  |  ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  ( J  e.  T  <->  ( J  e.  C  /\  ( O `  ( O `  ( L `
  J ) ) )  e.  Y ) ) )
 
Theoremmapdordlem1bN 35274* Lemma for mapdord 35277. (Contributed by NM, 27-Jan-2015.) (New usage is discouraged.)
 |-  C  =  { g  e.  F  |  ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g ) }   =>    |-  ( J  e.  C 
 <->  ( J  e.  F  /\  ( O `  ( O `  ( L `  J ) ) )  =  ( L `  J ) ) )
 
Theoremmapdordlem1 35275* Lemma for mapdord 35277. (Contributed by NM, 27-Jan-2015.)
 |-  T  =  { g  e.  F  |  ( O `  ( O `  ( L `  g ) ) )  e.  Y }   =>    |-  ( J  e.  T 
 <->  ( J  e.  F  /\  ( O `  ( O `  ( L `  J ) ) )  e.  Y ) )
 
Theoremmapdordlem2 35276* Lemma for mapdord 35277. Ordering property of projectivity  M. TODO: This was proved using some hacked-up older proofs. Maybe simplify; get rid of the 
T hypothesis. (Contributed by NM, 27-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  S )   &    |-  ( ph  ->  Y  e.  S )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  A  =  (LSAtoms `  U )   &    |-  F  =  (LFnl `  U )   &    |-  J  =  (LSHyp `  U )   &    |-  L  =  (LKer `  U )   &    |-  T  =  {
 g  e.  F  |  ( O `  ( O `
  ( L `  g ) ) )  e.  J }   &    |-  C  =  { g  e.  F  |  ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g ) }   =>    |-  ( ph  ->  ( ( M `  X )  C_  ( M `  Y )  <->  X  C_  Y ) )
 
Theoremmapdord 35277 Ordering property of the map defined by df-mapd 35264. Property (b) of [Baer] p. 40. (Contributed by NM, 27-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  S )   &    |-  ( ph  ->  Y  e.  S )   =>    |-  ( ph  ->  (
 ( M `  X )  C_  ( M `  Y )  <->  X  C_  Y ) )
 
Theoremmapd11 35278 The map defined by df-mapd 35264 is one-to-one. Property (c) of [Baer] p. 40. (Contributed by NM, 12-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  S )   &    |-  ( ph  ->  Y  e.  S )   =>    |-  ( ph  ->  (
 ( M `  X )  =  ( M `  Y )  <->  X  =  Y ) )
 
TheoremmapddlssN 35279 The mapping of a subspace of vector space H to the dual space is a subspace of the dual space. TODO: Make this obsolete, use mapdcl2 35295 instead. (Contributed by NM, 31-Jan-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  D  =  (LDual `  U )   &    |-  T  =  ( LSubSp `  D )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  R  e.  S )   =>    |-  ( ph  ->  ( M `  R )  e.  T )
 
Theoremmapdsn 35280* Value of the map defined by df-mapd 35264 at the span of a singleton. (Contributed by NM, 16-Feb-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  V )   =>    |-  ( ph  ->  ( M `  ( N `
  { X }
 ) )  =  {
 f  e.  F  |  ( O `  { X } )  C_  ( L `
  f ) }
 )
 
Theoremmapdsn2 35281* Value of the map defined by df-mapd 35264 at the span of a singleton. (Contributed by NM, 16-Feb-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  ( L `  G )  =  ( O `  { X }
 ) )   =>    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  { f  e.  F  |  ( L `
  G )  C_  ( L `  f ) } )
 
Theoremmapdsn3 35282 Value of the map defined by df-mapd 35264 at the span of a singleton. (Contributed by NM, 17-Feb-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  P  =  ( LSpan `  D )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( L `  G )  =  ( O `  { X } ) )   =>    |-  ( ph  ->  ( M `  ( N `
  { X }
 ) )  =  ( P `  { G } ) )
 
Theoremmapd1dim2lem1N 35283* Value of the map defined by df-mapd 35264 at an atom. (Contributed by NM, 10-Feb-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  A  =  (LSAtoms `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  Q  e.  A )   =>    |-  ( ph  ->  ( M `  Q )  =  { f  e.  F  |  E. v  e.  Q  ( O `  { v } )  =  ( L `  f
 ) } )
 
Theoremmapdrvallem2 35284* Lemma for mapdrval 35286. TODO: very long antecedents are dragged through proof in some places - see if it shortens proof to remove unused conjuncts. (Contributed by NM, 2-Feb-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  T  =  ( LSubSp `  D )   &    |-  C  =  { g  e.  F  |  ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  R  e.  T )   &    |-  ( ph  ->  R  C_  C )   &    |-  Q  =  U_ h  e.  R  ( O `  ( L `  h ) )   &    |-  V  =  (
 Base `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  Y  =  ( 0g
 `  D )   =>    |-  ( ph  ->  { f  e.  C  |  ( O `  ( L `
  f ) ) 
 C_  Q }  C_  R )
 
Theoremmapdrvallem3 35285* Lemma for mapdrval 35286. (Contributed by NM, 2-Feb-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  T  =  ( LSubSp `  D )   &    |-  C  =  { g  e.  F  |  ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  R  e.  T )   &    |-  ( ph  ->  R  C_  C )   &    |-  Q  =  U_ h  e.  R  ( O `  ( L `  h ) )   &    |-  V  =  (
 Base `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  Y  =  ( 0g
 `  D )   =>    |-  ( ph  ->  { f  e.  C  |  ( O `  ( L `
  f ) ) 
 C_  Q }  =  R )
 
Theoremmapdrval 35286* Given a dual subspace  R (of functionals with closed kernels), reconstruct the subspace 
Q that maps to it. (Contributed by NM, 12-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  T  =  ( LSubSp `  D )   &    |-  C  =  { g  e.  F  |  ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  R  e.  T )   &    |-  ( ph  ->  R  C_  C )   &    |-  Q  =  U_ h  e.  R  ( O `  ( L `  h ) )   =>    |-  ( ph  ->  ( M `  Q )  =  R )
 
Theoremmapd1o 35287* The map defined by df-mapd 35264 is one-to-one and onto the set of dual subspaces of functionals with closed kernels. This shows  M satisfies part of the definition of projectivity of [Baer] p. 40. TODO: change theorems leading to this (lcfr 35224, mapdrval 35286, lclkrs 35178, lclkr 35172,...) to use  T  i^i  ~P C? TODO: maybe get rid of $d's for  g vs.  K U W,. propagate to mapdrn 35288 and any others. (Contributed by NM, 12-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  T  =  ( LSubSp `  D )   &    |-  C  =  { g  e.  F  |  ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  M : S -1-1-onto-> ( T  i^i  ~P C ) )
 
Theoremmapdrn 35288* Range of the map defined by df-mapd 35264. (Contributed by NM, 12-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  T  =  ( LSubSp `  D )   &    |-  C  =  { g  e.  F  |  ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  ran  M  =  ( T  i^i  ~P C ) )
 
TheoremmapdunirnN 35289* Union of the range of the map defined by df-mapd 35264. (Contributed by NM, 13-Mar-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  C  =  { g  e.  F  |  ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  U. ran  M  =  C )
 
Theoremmapdrn2 35290 Range of the map defined by df-mapd 35264. TODO: this seems to be needed a lot in hdmaprnlem3eN 35500 etc. Would it be better to change df-mapd 35264 theorems to use  LSubSp `  C instead of  ran  M? (Contributed by NM, 13-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  T  =  ( LSubSp `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  ran  M  =  T )
 
Theoremmapdcnvcl 35291 Closure of the converse of the map defined by df-mapd 35264. (Contributed by NM, 13-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ran  M )   =>    |-  ( ph  ->  ( `' M `  X )  e.  S )
 
Theoremmapdcl 35292 Closure the value of the map defined by df-mapd 35264. (Contributed by NM, 13-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  S )   =>    |-  ( ph  ->  ( M `  X )  e.  ran  M )
 
Theoremmapdcnvid1N 35293 Converse of the value of the map defined by df-mapd 35264. (Contributed by NM, 13-Mar-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  S )   =>    |-  ( ph  ->  ( `' M `  ( M `
  X ) )  =  X )
 
Theoremmapdsord 35294 Strong ordering property of themap defined by df-mapd 35264. (Contributed by NM, 13-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  S )   &    |-  ( ph  ->  Y  e.  S )   =>    |-  ( ph  ->  (
 ( M `  X )  C.  ( M `  Y )  <->  X  C.  Y ) )
 
Theoremmapdcl2 35295 The mapping of a subspace of vector space H is a subspace in the dual space of functionals with closed kernels. (Contributed by NM, 31-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  T  =  ( LSubSp `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  R  e.  S )   =>    |-  ( ph  ->  ( M `  R )  e.  T )
 
Theoremmapdcnvid2 35296 Value of the converse of the map defined by df-mapd 35264. (Contributed by NM, 13-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ran  M )   =>    |-  ( ph  ->  ( M `  ( `' M `  X ) )  =  X )
 
TheoremmapdcnvordN 35297 Ordering property of the converse of the map defined by df-mapd 35264. (Contributed by NM, 13-Mar-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ran  M )   &    |-  ( ph  ->  Y  e.  ran  M )   =>    |-  ( ph  ->  (
 ( `' M `  X )  C_  ( `' M `  Y )  <->  X  C_  Y ) )
 
Theoremmapdcnv11N 35298 The converse of the map defined by df-mapd 35264 is one-to-one. (Contributed by NM, 13