HomeHome Metamath Proof Explorer
Theorem List (p. 334 of 370)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-25511)
  Hilbert Space Explorer  Hilbert Space Explorer
(25512-27036)
  Users' Mathboxes  Users' Mathboxes
(27037-36923)
 

Theorem List for Metamath Proof Explorer - 33301-33400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorembj-alrimhi 33301 An inference associated with bj-alrimh 33296 and bj-exlimh 33299. (Contributed by BJ, 12-May-2019.)
 |-  ( ph  ->  ps )   =>    |-  (FF/ x ph  ->  ( E. x ph  ->  A. x ps ) )
 
Theorembj-nexdh 33302 Closed form of nexdh 1651 (and more general since it uses  ch). (Contributed by BJ, 6-May-2019.)
 |-  ( A. x ( ph  ->  -. 
 ps )  ->  (
 ( ch  ->  A. x ph )  ->  ( ch  ->  -.  E. x ps ) ) )
 
Theorembj-nexdh2 33303 Uncurried form of bj-nexdh 33302. (Contributed by BJ, 6-May-2019.)
 |-  (
 ( A. x ( ph  ->  -.  ps )  /\  ( ch  ->  A. x ph ) )  ->  ( ch 
 ->  -.  E. x ps ) )
 
Theorembj-hbxfrbi 33304 Closed form of hbxfrbi 1623. Notes: it is less important than bj-nfbi 33305; it requires sp 1808 (unlike bj-nfbi 33305); there is an obvious version with  ( E. x ph  ->  ph ) instead. (Contributed by BJ, 6-May-2019.)
 |-  ( A. x ( ph  <->  ps )  ->  (
 ( ph  ->  A. x ph )  <->  ( ps  ->  A. x ps ) ) )
 
Theorembj-nfbi 33305 Closed form of nfbii 1624 (with df-bj-nf 33278 instead of df-nf 1600, which would require more axioms). (Contributed by BJ, 6-May-2019.)
 |-  ( A. x ( ph  <->  ps )  ->  (FF/ x ph  <-> FF/ x ps ) )
 
Theorembj-nfxfr 33306 Proof of nfxfr 1625 from bj-nfbi 33305. (Contributed by BJ, 6-May-2019.)
 |-  ( ph 
 <->  ps )   &    |- FF/ x ph   =>    |- FF/
 x ps
 
Theorembj-nfn 33307 A variable is non-free in a proposition if and only if it is so in its negation. Requires fewer axioms than nfn 1849. (Contributed by BJ, 6-May-2019.)
 |-  (FF/ x ph  <-> FF/ x  -.  ph )
 
Theorembj-19.40b 33308 The antecedent provides a condition implying the converse of 19.40 1656. This is to 19.40 1656 what 19.33b 1673 is to 19.33 1672. (Contributed by BJ, 6-May-2019.)
 |-  (
 ( A. x ph  \/  A. x ps )  ->  ( ( E. x ph 
 /\  E. x ps )  <->  E. x ( ph  /\  ps ) ) )
 
21.29.4.4  Adding ax-5
 
Theorembj-nfv 33309* A non-occurring variable is semantically non-free. (Contributed by BJ, 6-May-2019.)
 |- FF/ x ph
 
21.29.4.5  Equality and substitution

The following theorems are the general instances of already proved theorems. They could be moved to the main part, right before weq 1705. I propose to move to the main part: bj-exnalimn 33310, bj-exaleximi 33313, bj-exalimi 33314, bj-ax12i 33315. A new label is needed for bj-ax12i 33315 and label suggestions are welcome for the others. I also propose to change  -.  A. x -. to  E. x in speimfw 1707 and spimfw 1709 (other spim* theorems use  E. x and very very few theorems in set.mm use  -.  A. x -.).

 
Theorembj-exnalimn 33310 A transformation of quantifiers and logical connectives. The general statement that equs3 1706 proves. (Contributed by BJ, 29-Sep-2019.)
 |-  ( E. x ( ph  /\  ps ) 
 <->  -.  A. x (
 ph  ->  -.  ps )
 )
 
Theorembj-nalnaleximiOLD 33311 An inference for distributing quantifiers over a double implication. The general statement that speimfw 1707 proves. (Contributed by BJ, 12-May-2019.)
 |-  ( ch  ->  ( ph  ->  ps ) )   =>    |-  ( -.  A. x  -.  ch  ->  ( A. x ph  ->  E. x ps ) )
 
Theorembj-nalnalimiOLD 33312 An inference for distributing quantifiers over a double implication. The general statement that spimfw 1709 proves. (Contributed by BJ, 12-May-2019.)
 |-  ( ch  ->  ( ph  ->  ps ) )   &    |-  ( -.  ps  ->  A. x  -.  ps )   =>    |-  ( -.  A. x  -.  ch  ->  ( A. x ph  ->  ps )
 )
 
Theorembj-exaleximi 33313 An inference for distributing quantifiers over a double implication. (Almost) the general statement that speimfw 1707 proves. (Contributed by BJ, 29-Sep-2019.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( E. x ph  ->  ( A. x ps  ->  E. x ch )
 )
 
Theorembj-exalimi 33314 An inference for distributing quantifiers over a double implication. (Almost) the general statement that spimfw 1709 proves. (Contributed by BJ, 29-Sep-2019.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( E. x ph 
 ->  ( -.  ch  ->  A. x  -.  ch )
 )   =>    |-  ( E. x ph  ->  ( A. x ps  ->  ch ) )
 
Theorembj-ax12i 33315 A statement close to the axiom of substitution ax-12 1803. (Almost) the general statement that ax12i 1710 proves. (Contributed by BJ, 29-Sep-2019.)
 |-  ( ph  ->  ( ps  <->  ch ) )   &    |-  ( ch  ->  A. x ch )   =>    |-  ( ph  ->  ( ps  ->  A. x ( ph  ->  ps ) ) )
 
21.29.4.6  Adding ax-6
 
Theorembj-19.8w 33316 The general statement that 19.8w 1724 proves (deduction form of 19.2 1723, so could be labelled 19.2d instead). (Contributed by BJ, 12-May-2019.)
 |-  ( ph  ->  A. x ps )   =>    |-  ( ph  ->  E. x ps )
 
Theorembj-spnfw 33317 Theorem close to a closed form of spnfw 1734. (Contributed by BJ, 12-May-2019.)
 |-  (
 ( E. x ph  ->  ps )  ->  ( A. x ph  ->  ps )
 )
 
21.29.4.7  Adding ax-7
 
Theorembj-equcomd 33318 Deduction form of equcom 1743, symmetry of equality. For the versions for classes, see eqcom 2476 and eqcomd 2475. (TODO: move to main part.) (Contributed by BJ, 6-Oct-2019.)
 |-  ( ph  ->  x  =  y )   =>    |-  ( ph  ->  y  =  x )
 
21.29.4.8  Membership predicate, ax-8 and ax-9
 
Theorembj-elequ2g 33319* A form of elequ2 1772 with a universal quantifier. Its converse is ax-ext 2445. (TODO: move to main part, minimize axext4 2449.) (Contributed by BJ, 3-Oct-2019.)
 |-  ( x  =  y  ->  A. z ( z  e.  x  <->  z  e.  y
 ) )
 
Theorembj-ax89 33320 A theorem which could be used as sole axiom for the non-logical predicate instead of ax-8 1769 and ax-9 1771. Indeed, it is implied over propositional calculus by the conjunction of ax-8 1769 and ax-9 1771, as proved here. In the other direction, one can prove ax-8 1769 (respectively ax-9 1771) from bj-ax89 33320 by using mpan2 671 ( respectively mpan 670) and equid 1740. (TODO: move to main part.) (Contributed by BJ, 3-Oct-2019.)
 |-  (
 ( x  =  y 
 /\  z  =  t )  ->  ( x  e.  z  ->  y  e.  t ) )
 
Theorembj-elequ12 33321 An identity law for the non-logical predicate, which combines elequ1 1770 and elequ2 1772. For the analogous theorems for class terms, see eleq1 2539, eleq2 2540 and eleq12 2543. (TODO: move to main part.) (Contributed by BJ, 29-Sep-2019.)
 |-  (
 ( x  =  y 
 /\  z  =  t )  ->  ( x  e.  z  <->  y  e.  t
 ) )
 
21.29.4.9  Adding ax-11
 
Theorembj-hbalt 33322 Closed form of hbal 1793. When in main part, prove hbal 1793 and hbald 1797 from it. (Contributed by BJ, 2-May-2019.)
 |-  ( A. y ( ph  ->  A. x ph )  ->  ( A. y ph  ->  A. x A. y ph ) )
 
21.29.4.10  Adding ax-12
 
Theorembj-modalbe 33323 The predicate-calculus version of the axiom (B) of modal logic. See also modal-b 1812. (Contributed by BJ, 20-Oct-2019.)
 |-  ( ph  ->  A. x E. x ph )
 
Theorembj-spst 33324 Closed form of sps 1814. Once in main part, prove sps 1814 and spsd 1816 from it. (Contributed by BJ, 20-Oct-2019.)
 |-  (
 ( ph  ->  ps )  ->  ( A. x ph  ->  ps ) )
 
Theorembj-19.21bit 33325 Closed form of 19.21bi 1818. (Contributed by BJ, 20-Oct-2019.)
 |-  (
 ( ph  ->  A. x ps )  ->  ( ph  ->  ps ) )
 
Theorembj-19.23bit 33326 Closed form of 19.23bi 1819. (Contributed by BJ, 20-Oct-2019.)
 |-  (
 ( E. x ph  ->  ps )  ->  ( ph  ->  ps ) )
 
Theorembj-nexrt 33327 Closed form of nexr 1820. Contrapositive of 19.8a 1806. (Contributed by BJ, 20-Oct-2019.)
 |-  ( -.  E. x ph  ->  -.  ph )
 
Theorembj-alrim 33328 Closed form of alrimi 1825. (Contributed by BJ, 2-May-2019.)
 |-  ( F/ x ph  ->  ( A. x ( ph  ->  ps )  ->  ( ph  ->  A. x ps )
 ) )
 
Theorembj-alrim2 33329 Imported form (uncurried form) of bj-alrim 33328. (Contributed by BJ, 2-May-2019.)
 |-  (
 ( F/ x ph  /\ 
 A. x ( ph  ->  ps ) )  ->  ( ph  ->  A. x ps ) )
 
Theorembj-nfdt0 33330 A theorem close to a closed form of nfd 1826 and nfdh 1827. (Contributed by BJ, 2-May-2019.)
 |-  ( A. x ( ph  ->  ( ps  ->  A. x ps ) )  ->  ( A. x ph  ->  F/ x ps ) )
 
Theorembj-nfdt 33331 Closed form of nfd 1826 and nfdh 1827. (Contributed by BJ, 2-May-2019.)
 |-  ( A. x ( ph  ->  ( ps  ->  A. x ps ) )  ->  ( (
 ph  ->  A. x ph )  ->  ( ph  ->  F/ x ps ) ) )
 
Theorembj-nexdt 33332 Closed form of nexd 1831. (Contributed by BJ, 20-Oct-2019.)
 |-  ( F/ x ph  ->  ( A. x ( ph  ->  -. 
 ps )  ->  ( ph  ->  -.  E. x ps ) ) )
 
Theorembj-nexdvt 33333* Closed form of nexdv 1832. (Contributed by BJ, 20-Oct-2019.)
 |-  ( A. x ( ph  ->  -. 
 ps )  ->  ( ph  ->  -.  E. x ps ) )
 
Theorembj-19.3t 33334 Closed form of 19.3 1836. (Contributed by BJ, 20-Oct-2019.)
 |-  (
 ( ph  ->  A. x ph )  ->  ( A. x ph  <->  ph ) )
 
Theorembj-alexbiex 33335 Adding a second quantifier is a tranparent operation, ( A. E. case). (Contributed by BJ, 20-Oct-2019.)
 |-  ( A. x E. x ph  <->  E. x ph )
 
Theorembj-exexbiex 33336 Adding a second quantifier is a tranparent operation, ( E. E. case). (Contributed by BJ, 20-Oct-2019.)
 |-  ( E. x E. x ph  <->  E. x ph )
 
Theorembj-alalbial 33337 Adding a second quantifier is a tranparent operation, ( A. A. case). (Contributed by BJ, 20-Oct-2019.)
 |-  ( A. x A. x ph  <->  A. x ph )
 
Theorembj-exalbial 33338 Adding a second quantifier is a tranparent operation, ( E. A. case). (Contributed by BJ, 20-Oct-2019.)
 |-  ( E. x A. x ph  <->  A. x ph )
 
Theorembj-19.9htbi 33339 Strengthening 19.9ht 1837 by replacing its succedent with a biconditional (19.9t 1838 does have a biconditional succedent). This propagates. (Contributed by BJ, 20-Oct-2019.)
 |-  ( A. x ( ph  ->  A. x ph )  ->  ( E. x ph  <->  ph ) )
 
Theorembj-hbntbi 33340 Strengthening hbnt 1842 by replacing its succedent with a biconditional. See also hbntg 28815 and hbntal 32406. (Contributed by BJ, 20-Oct-2019.) Proved from bj-19.9htbi 33339. (Proof modification is discouraged.)
 |-  ( A. x ( ph  ->  A. x ph )  ->  ( -.  ph  <->  A. x  -.  ph ) )
 
Theorembj-biexal1 33341 A general FOL biconditional that generalizes 19.9ht 1837 among others. For this and the following theorems, see also 19.35 1664, 19.21 1853, 19.23 1857. (Contributed by BJ, 20-Oct-2019.)
 |-  ( A. x ( ph  ->  A. x ps )  <->  ( E. x ph 
 ->  A. x ps )
 )
 
Theorembj-biexal2 33342 A general FOL biconditional. (Contributed by BJ, 20-Oct-2019.)
 |-  ( A. x ( E. x ph 
 ->  ps )  <->  ( E. x ph 
 ->  A. x ps )
 )
 
Theorembj-biexal3 33343 A general FOL biconditional. (Contributed by BJ, 20-Oct-2019.)
 |-  ( A. x ( ph  ->  A. x ps )  <->  A. x ( E. x ph  ->  ps )
 )
 
Theorembj-bialal 33344 A general FOL biconditional. (Contributed by BJ, 20-Oct-2019.)
 |-  ( A. x ( A. x ph 
 ->  ps )  <->  ( A. x ph 
 ->  A. x ps )
 )
 
Theorembj-biexex 33345 A general FOL biconditional. (Contributed by BJ, 20-Oct-2019.)
 |-  ( A. x ( ph  ->  E. x ps )  <->  ( E. x ph 
 ->  E. x ps )
 )
 
Theorembj-hbext 33346 Closed form of hbex 1893. (Contributed by BJ, 10-Oct-2019.)
 |-  ( A. y A. x (
 ph  ->  A. x ph )  ->  ( E. y ph  ->  A. x E. y ph ) )
 
Theorembj-nfalt 33347 Closed form of nfal 1894. (Contributed by BJ, 2-May-2019.)
 |-  ( A. x F/ y ph  ->  F/ y A. x ph )
 
Theorembj-nfext 33348 Closed form of nfex 1895. (Contributed by BJ, 10-Oct-2019.)
 |-  ( A. x F/ y ph  ->  F/ y E. x ph )
 
Theorembj-eeanvw 33349* Version of eeanv 1957 with a DV condition on  x ,  y not requiring ax-11 1791. (The same can be done with eeeanv 1958 and ee4anv 1959.) (Contributed by BJ, 29-Sep-2019.) (Proof modification is discouraged.)
 |-  ( E. x E. y (
 ph  /\  ps )  <->  ( E. x ph  /\  E. y ps ) )
 
21.29.4.11  Adding ax-13
 
Theorembj-alequex 33350 A fol lemma. Can be used to reduce the proof of spimt 1974 from 133 to 112 bytes. (Contributed by BJ, 6-Oct-2018.)
 |-  ( A. x ( x  =  y  ->  ph )  ->  E. x ph )
 
Theorembj-spimt2 33351 A step in the proof of spimt 1974. (Contributed by BJ, 2-May-2019.)
 |-  ( A. x ( x  =  y  ->  ( ph  ->  ps ) )  ->  ( ( E. x ps  ->  ps )  ->  ( A. x ph  ->  ps )
 ) )
 
Theorembj-cbv3ta 33352 Closed form of cbv3 1984. (Contributed by BJ, 2-May-2019.)
 |-  ( A. x A. y ( x  =  y  ->  ( ph  ->  ps )
 )  ->  ( ( A. y ( E. x ps  ->  ps )  /\  A. x ( ph  ->  A. y ph ) ) 
 ->  ( A. x ph  ->  A. y ps )
 ) )
 
Theorembj-cbv3tb 33353 Closed form of cbv3 1984. (Contributed by BJ, 2-May-2019.)
 |-  ( A. x A. y ( x  =  y  ->  ( ph  ->  ps )
 )  ->  ( ( A. y F/ x ps  /\ 
 A. x F/ y ph )  ->  ( A. x ph  ->  A. y ps ) ) )
 
Theorembj-hbsb3t 33354 A theorem close to a closed form of hbsb3 2076. (Contributed by BJ, 2-May-2019.)
 |-  ( A. x ( ph  ->  A. y ph )  ->  ( [ y  /  x ] ph  ->  A. x [
 y  /  x ] ph ) )
 
Theorembj-hbsb3 33355 Shorter proof of hbsb3 2076. (Contributed by BJ, 2-May-2019.)
 |-  ( ph  ->  A. y ph )   =>    |-  ( [ y  /  x ] ph  ->  A. x [
 y  /  x ] ph )
 
Theorembj-nfs1t 33356 A theorem close to a closed form of nfs1 2077. (Contributed by BJ, 2-May-2019.)
 |-  ( A. x ( ph  ->  A. y ph )  ->  F/ x [ y  /  x ] ph )
 
Theorembj-nfs1t2 33357 A theorem close to a closed form of nfs1 2077. (Contributed by BJ, 2-May-2019.)
 |-  ( A. x F/ y ph  ->  F/ x [ y  /  x ] ph )
 
Theorembj-nfs1 33358 Shorter proof of nfs1 2077 (three essential steps instead of four). (Contributed by BJ, 2-May-2019.)
 |-  F/ y ph   =>    |- 
 F/ x [ y  /  x ] ph
 
21.29.4.12  Removing dependencies on ax-13 (and ax-11)

It is known that ax-13 1968 is logically redundant (see ax13w 1781 and the head comment of the section "Logical redundancy of ax-10--13"). More precisely, one can remove dependency on ax-13 1968 from every theorem in set.mm which is totally unbundled (i.e., has dv conditions on all setvar variables). Indeed, start with the existing proof, and replace any occurrence of ax-13 1968 with ax13w 1781.

This section is an experiment to see in practice if (partially) unbundled versions of existing theorems can be proved more efficiently without ax-13 1968 (and using ax6v 1720 / ax6ev 1721 instead of ax-6 1719 / ax6e 1971, as is currently done).

One reason to be optimistic is that the first few utility theorems using ax-13 1968 (roughly 200 of them) are then used mainly with dummy variables, which one can assume distinct from any other, so that the unbundled versions of the utility theorems suffice.

In this section, we prove versions of theorems in the main part with dv conditions and not requiring ax-13 1968, labelled bj-xxxv (we follow the proof of xxx but use ax6v 1720 and ax6ev 1721 instead of ax-6 1719 and ax6e 1971, and ax-5 1680 instead of ax13v 1969; shorter proofs may be possible). When no additional dv condition is required, we label it bj-xxx.

It is important to keep all the bundled theorems already in set.mm, but one may also add the (partially) unbundled versions which dipense with ax-13 1968, so as to remove dependencies on ax-13 1968 from many existing theorems.

UPDATE: it turns out that several theorems of the form bj-xxxv, or minor variations, are already in set.mm with label xxxw.

It is also possible to remove dependencies on ax-11 1791, typically by replacing a non-free hypothesis with a dv condition (see bj-cbv3v2 33371 and following theorems).

 
Theorembj-axc10v 33359* Version of axc10 1973 with a dv condition, which does not require ax-13 1968. (Contributed by BJ, 14-Jun-2019.) (Proof modification is discouraged.)
 |-  ( A. x ( x  =  y  ->  A. x ph )  ->  ph )
 
Theorembj-spimtv 33360* Version of spimt 1974 with a dv condition, which does not require ax-13 1968. (Contributed by BJ, 14-Jun-2019.) (Proof modification is discouraged.)
 |-  (
 ( F/ x ps  /\ 
 A. x ( x  =  y  ->  ( ph  ->  ps ) ) ) 
 ->  ( A. x ph  ->  ps ) )
 
Theorembj-spimv 33361* Version of spim 1975 with a dv condition, which does not require ax-13 1968. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
 |-  F/ x ps   &    |-  ( x  =  y  ->  ( ph  ->  ps ) )   =>    |-  ( A. x ph 
 ->  ps )
 
Theorembj-spimedv 33362* Version of spimed 1976 with a dv condition, which does not require ax-13 1968. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
 |-  ( ch  ->  F/ x ph )   &    |-  ( x  =  y 
 ->  ( ph  ->  ps )
 )   =>    |-  ( ch  ->  ( ph  ->  E. x ps )
 )
 
Theorembj-spimev 33363* Version of spime 1977 with a dv condition, which does not require ax-13 1968. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
 |-  F/ x ph   &    |-  ( x  =  y  ->  ( ph  ->  ps ) )   =>    |-  ( ph  ->  E. x ps )
 
Theorembj-spimvv 33364* Version of spimv 1978 with a dv condition, which does not require ax-13 1968. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
 |-  ( x  =  y  ->  (
 ph  ->  ps ) )   =>    |-  ( A. x ph 
 ->  ps )
 
Theorembj-spimevv 33365* Version of spimev 1979 with a dv condition, which does not require ax-13 1968. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
 |-  ( x  =  y  ->  (
 ph  ->  ps ) )   =>    |-  ( ph  ->  E. x ps )
 
Theorembj-spvv 33366* Version of spv 1980 with a dv condition, which does not require ax-13 1968. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
 |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A. x ph 
 ->  ps )
 
Theorembj-speiv 33367* Version of spei 1981 with a dv condition, which does not require ax-13 1968 (neither ax-7 1739 nor ax-12 1803). (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
 |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   &    |-  ps   =>    |-  E. x ph
 
Theorembj-chvarv 33368* Version of chvar 1982 with a dv condition, which does not require ax-13 1968. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
 |-  F/ x ps   &    |-  ( x  =  y  ->  ( ph  <->  ps ) )   &    |-  ph   =>    |- 
 ps
 
Theorembj-chvarvv 33369* Version of chvarv 1983 with a dv condition, which does not require ax-13 1968. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
 |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   &    |-  ph   =>    |- 
 ps
 
Theorembj-cbv3v 33370* Version of cbv3 1984 with a dv condition, which does not require ax-13 1968. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
 |-  F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph  ->  ps ) )   =>    |-  ( A. x ph 
 ->  A. y ps )
 
Theorembj-cbv3v2 33371* Version of cbv3 1984 with two dv conditions, which does not require ax-11 1791 nor ax-13 1968. (Contributed by BJ, 24-Jun-2019.) (Proof modification is discouraged.)
 |-  F/ x ps   &    |-  ( x  =  y  ->  ( ph  ->  ps ) )   =>    |-  ( A. x ph 
 ->  A. y ps )
 
Theorembj-cbv3hv 33372* Version of cbv3h 1985 with a dv condition, which does not require ax-13 1968. (Contributed by BJ, 14-Jun-2019.) (Proof modification is discouraged.)
 |-  ( ph  ->  A. y ph )   &    |-  ( ps  ->  A. x ps )   &    |-  ( x  =  y  ->  (
 ph  ->  ps ) )   =>    |-  ( A. x ph 
 ->  A. y ps )
 
Theorembj-cbv3hv2 33373* Version of cbv3h 1985 with two dv conditions, which does not require ax-11 1791 nor ax-13 1968. (Contributed by BJ, 24-Jun-2019.) (Proof modification is discouraged.)
 |-  ( ps  ->  A. x ps )   &    |-  ( x  =  y  ->  (
 ph  ->  ps ) )   =>    |-  ( A. x ph 
 ->  A. y ps )
 
Theorembj-cbv1v 33374* Version of cbv1 1986 with a dv condition, which does not require ax-13 1968. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
 |-  F/ x ph   &    |-  F/ y ph   &    |-  ( ph  ->  F/ y ps )   &    |-  ( ph  ->  F/ x ch )   &    |-  ( ph  ->  ( x  =  y  ->  ( ps  ->  ch ) ) )   =>    |-  ( ph  ->  ( A. x ps  ->  A. y ch ) )
 
Theorembj-cbv1hv 33375* Version of cbv1h 1987 with a dv condition, which does not require ax-13 1968. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
 |-  ( ph  ->  ( ps  ->  A. y ps ) )   &    |-  ( ph  ->  ( ch  ->  A. x ch )
 )   &    |-  ( ph  ->  ( x  =  y  ->  ( ps  ->  ch )
 ) )   =>    |-  ( A. x A. y ph  ->  ( A. x ps  ->  A. y ch ) )
 
Theorembj-cbv2hv 33376* Version of cbv2h 1991 with a dv condition, which does not require ax-13 1968. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
 |-  ( ph  ->  ( ps  ->  A. y ps ) )   &    |-  ( ph  ->  ( ch  ->  A. x ch )
 )   &    |-  ( ph  ->  ( x  =  y  ->  ( ps  <->  ch ) ) )   =>    |-  ( A. x A. y ph  ->  ( A. x ps 
 <-> 
 A. y ch )
 )
 
Theorembj-cbv2v 33377* Version of cbv2 1992 with a dv condition, which does not require ax-13 1968. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
 |-  F/ x ph   &    |-  F/ y ph   &    |-  ( ph  ->  F/ y ps )   &    |-  ( ph  ->  F/ x ch )   &    |-  ( ph  ->  ( x  =  y  ->  ( ps  <->  ch ) ) )   =>    |-  ( ph  ->  (
 A. x ps  <->  A. y ch )
 )
 
Theorembj-cbvalv 33378* Version of cbval 1994 with a dv condition, which does not require ax-13 1968. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
 |-  F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A. x ph  <->  A. y ps )
 
Theorembj-cbvexv 33379* Version of cbvex 1995 with a dv condition, which does not require ax-13 1968. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
 |-  F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E. x ph  <->  E. y ps )
 
Theorembj-cbvalvv 33380* Version of cbvalv 1996 with a dv condition, which does not require ax-13 1968. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
 |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A. x ph  <->  A. y ps )
 
Theorembj-cbvexvv 33381* Version of cbvexv 1997 with a dv condition, which does not require ax-13 1968. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
 |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E. x ph  <->  E. y ps )
 
Theorembj-cbvaldv 33382* Version of cbvald 1998 with a dv condition, which does not require ax-13 1968. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
 |-  F/ y ph   &    |-  ( ph  ->  F/ y ps )   &    |-  ( ph  ->  ( x  =  y  ->  ( ps  <->  ch ) ) )   =>    |-  ( ph  ->  (
 A. x ps  <->  A. y ch )
 )
 
Theorembj-cbvexdv 33383* Version of cbvexd 1999 with a dv condition, which does not require ax-13 1968. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
 |-  F/ y ph   &    |-  ( ph  ->  F/ y ps )   &    |-  ( ph  ->  ( x  =  y  ->  ( ps  <->  ch ) ) )   =>    |-  ( ph  ->  ( E. x ps  <->  E. y ch )
 )
 
Theorembj-cbval2v 33384* Version of cbval2 2000 with a dv condition, which does not require ax-13 1968. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
 |-  F/ z ph   &    |-  F/ w ph   &    |-  F/ x ps   &    |-  F/ y ps   &    |-  ( ( x  =  z  /\  y  =  w )  ->  ( ph 
 <->  ps ) )   =>    |-  ( A. x A. y ph  <->  A. z A. w ps )
 
Theorembj-cbvex2v 33385* Version of cbvex2 2001 with a dv condition, which does not require ax-13 1968. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
 |-  F/ z ph   &    |-  F/ w ph   &    |-  F/ x ps   &    |-  F/ y ps   &    |-  ( ( x  =  z  /\  y  =  w )  ->  ( ph 
 <->  ps ) )   =>    |-  ( E. x E. y ph  <->  E. z E. w ps )
 
Theorembj-cbval2vv 33386* Version of cbval2v 2003 with a dv condition, which does not require ax-13 1968. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
 |-  (
 ( x  =  z 
 /\  y  =  w )  ->  ( ph  <->  ps ) )   =>    |-  ( A. x A. y ph  <->  A. z A. w ps )
 
Theorembj-cbvex2vv 33387* Version of cbvex2v 2004 with a dv condition, which does not require ax-13 1968. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
 |-  (
 ( x  =  z 
 /\  y  =  w )  ->  ( ph  <->  ps ) )   =>    |-  ( E. x E. y ph  <->  E. z E. w ps )
 
Theorembj-cbvaldvav 33388* Version of cbvaldva 2005 with a dv condition, which does not require ax-13 1968. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
 |-  (
 ( ph  /\  x  =  y )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  (
 A. x ps  <->  A. y ch )
 )
 
Theorembj-cbvexdvav 33389* Version of cbvexdva 2006 with a dv condition, which does not require ax-13 1968. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
 |-  (
 ( ph  /\  x  =  y )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( E. x ps  <->  E. y ch )
 )
 
Theorembj-cbvex4vv 33390* Version of cbvex4v 2007 with a dv condition, which does not require ax-13 1968. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
 |-  (
 ( x  =  v 
 /\  y  =  u )  ->  ( ph  <->  ps ) )   &    |-  ( ( z  =  f  /\  w  =  g )  ->  ( ps 
 <->  ch ) )   =>    |-  ( E. x E. y E. z E. w ph  <->  E. v E. u E. f E. g ch )
 
Theorembj-equs4v 33391* Version of equs4 2008 with a dv condition, which does not require ax-13 1968 (neither ax-5 1680 nor ax-7 1739 nor ax-12 1803). (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
 |-  ( A. x ( x  =  y  ->  ph )  ->  E. x ( x  =  y  /\  ph )
 )
 
Theorembj-equsalv 33392* Version of equsal 2009 with a dv condition, which does not require ax-13 1968. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
 |-  F/ x ps   &    |-  ( x  =  y  ->  ( ph  <->  ps ) )   =>    |-  ( A. x ( x  =  y  ->  ph )  <->  ps )
 
Theorembj-equsalhv 33393* Version of equsalh 2010 with a dv condition, which does not require ax-13 1968. Remark: this is the same as equsalhw 1892. (Contributed by BJ, 14-Jun-2019.) (Proof modification is discouraged.)
 |-  ( ps  ->  A. x ps )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A. x ( x  =  y  -> 
 ph )  <->  ps )
 
Theorembj-equsexv 33394* Version of equsex 2011 with a dv condition, which does not require ax-13 1968. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
 |-  F/ x ps   &    |-  ( x  =  y  ->  ( ph  <->  ps ) )   =>    |-  ( E. x ( x  =  y  /\  ph )  <->  ps )
 
Theorembj-equsexhv 33395* Version of equsexh 2012 with a dv condition, which does not require ax-13 1968. Remark: the theorem axc9lem2 2013 has a dv version which is a simple consequence of ax5e 1682; the theorems nfeqf2 2014, dveeq2 2015, nfeqf1 2016, dveeq1 2017, nfeqf 2018, axc9 2019, ax13 2020, have dv versions which are simple consequences of ax-5 1680. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
 |-  ( ps  ->  A. x ps )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E. x ( x  =  y  /\  ph )  <->  ps )
 
Theorembj-axc11nlemv 33396* Version of axc11nlemOLD 2021 with a dv condition, which does not require ax-13 1968. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
 |-  ( A. x  x  =  w  ->  A. y  y  =  x )
 
Theorembj-axc11nv 33397* Version of axc11n 2022 with a dv condition, which does not require ax-13 1968. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
 |-  ( A. x  x  =  y  ->  A. y  y  =  x )
 
Theorembj-aecomsv 33398* Version of aecoms 2025 with a dv condition, which does not require ax-13 1968. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
 |-  ( A. x  x  =  y  ->  ph )   =>    |-  ( A. y  y  =  x  ->  ph )
 
Theorembj-naecomsv 33399* Version of naecoms 2026 with a dv condition, which does not require ax-13 1968. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
 |-  ( -.  A. x  x  =  y  ->  ph )   =>    |-  ( -.  A. y  y  =  x  -> 
 ph )
 
Theorembj-axc11v 33400* Version of axc11 2027 with a dv condition, which does not require ax-13 1968. Remark: the following theorems (hbae 2028, nfae 2029, hbnae 2030, nfnae 2031, hbnaes 2032) would need to be totally unbundled to be proved without ax-13 1968, hence would be simple consequences of ax-5 1680 or nfv 1683. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
 |-  ( A. x  x  =  y  ->  ( A. x ph 
 ->  A. y ph )
 )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-36923
  Copyright terms: Public domain < Previous  Next >