HomeHome Metamath Proof Explorer
Theorem List (p. 333 of 376)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-25700)
  Hilbert Space Explorer  Hilbert Space Explorer
(25701-27225)
  Users' Mathboxes  Users' Mathboxes
(27226-37598)
 

Theorem List for Metamath Proof Explorer - 33201-33300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
TheoremeelT00 33201 An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( T.  ->  ph )   &    |-  ps   &    |-  ch   &    |-  ( ( ph  /\ 
 ps  /\  ch )  ->  th )   =>    |- 
 th
 
TheoremeelTTT 33202 An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( T.  ->  ph )   &    |-  ( T.  ->  ps )   &    |-  ( T.  ->  ch )   &    |-  ( ( ph  /\ 
 ps  /\  ch )  ->  th )   =>    |- 
 th
 
Theoremeel011 33203 mp3an 1323 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.)
 |-  ph   &    |-  ( ps  ->  ch )   &    |-  ( ps  ->  th )   &    |-  ( ( ph  /\ 
 ch  /\  th )  ->  ta )   =>    |-  ( ps  ->  ta )
 
TheoremeelT11 33204 An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( T.  ->  ph )   &    |-  ( ps  ->  ch )   &    |-  ( ps  ->  th )   &    |-  ( ( ph  /\ 
 ch  /\  th )  ->  ta )   =>    |-  ( ps  ->  ta )
 
Theoremeel012 33205 mp3an 1323 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.)
 |-  ph   &    |-  ( ps  ->  ch )   &    |-  ( th  ->  ta )   &    |-  ( ( ph  /\ 
 ch  /\  ta )  ->  et )   =>    |-  ( ( ps  /\  th )  ->  et )
 
Theoremeel0121 33206 An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.)
 |-  ph   &    |-  ( ps  ->  ch )   &    |-  ( ( ps 
 /\  th )  ->  ta )   &    |-  (
 ( ph  /\  ch  /\  ta )  ->  et )   =>    |-  (
 ( ps  /\  th )  ->  et )
 
TheoremeelT1 33207 Syllogism inference combined with modus ponens. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Alan Sare, 23-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( T.  ->  ph )   &    |-  ( ps  ->  ch )   &    |-  ( ( ph  /\ 
 ch )  ->  th )   =>    |-  ( ps  ->  th )
 
TheoremeelT12 33208 An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( T.  ->  ph )   &    |-  ( ps  ->  ch )   &    |-  ( th  ->  ta )   &    |-  ( ( ph  /\ 
 ch  /\  ta )  ->  et )   =>    |-  ( ( ps  /\  th )  ->  et )
 
Theoremeel001 33209 mp3an 1323 with antecedents in standard conjunction form and with one hypothesis an implication. (Contributed by Alan Sare, 28-Aug-2016.)
 |-  ph   &    |-  ps   &    |-  ( ch  ->  th )   &    |-  ( ( ph  /\ 
 ps  /\  th )  ->  ta )   =>    |-  ( ch  ->  ta )
 
TheoremeelTT1 33210 An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( T.  ->  ph )   &    |-  ( T.  ->  ps )   &    |-  ( ch  ->  th )   &    |-  ( ( ph  /\ 
 ps  /\  th )  ->  ta )   =>    |-  ( ch  ->  ta )
 
TheoremeelT01 33211 An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( T.  ->  ph )   &    |-  ps   &    |-  ( ch  ->  th )   &    |-  ( ( ph  /\ 
 ps  /\  th )  ->  ta )   =>    |-  ( ch  ->  ta )
 
Theoremeel0T1 33212 An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ph   &    |-  ( T.  ->  ps )   &    |-  ( ch  ->  th )   &    |-  ( ( ph  /\ 
 ps  /\  th )  ->  ta )   =>    |-  ( ch  ->  ta )
 
Theoremeel121 33213 syl2an 477 with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016.)
 |-  ( ph  ->  ps )   &    |-  ( ( ph  /\ 
 ch )  ->  th )   &    |-  (
 ( ps  /\  th )  ->  ta )   =>    |-  ( ( ph  /\  ch )  ->  ta )
 
Theoremeel12131 33214 An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.)
 |-  ( ph  ->  ps )   &    |-  ( ( ph  /\ 
 ch )  ->  th )   &    |-  (
 ( ph  /\  ta )  ->  et )   &    |-  ( ( ps 
 /\  th  /\  et )  ->  ze )   =>    |-  ( ( ph  /\  ch  /\ 
 ta )  ->  ze )
 
Theoremeel2131 33215 syl2an 477 with antecedents in standard conjunction form. (Contributed by Alan Sare, 26-Aug-2016.)
 |-  (
 ( ph  /\  ps )  ->  ch )   &    |-  ( ( ph  /\ 
 th )  ->  ta )   &    |-  (
 ( ch  /\  ta )  ->  et )   =>    |-  ( ( ph  /\ 
 ps  /\  th )  ->  et )
 
Theoremeel3132 33216 syl2an 477 with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016.)
 |-  (
 ( ph  /\  ps )  ->  ch )   &    |-  ( ( th  /\ 
 ps )  ->  ta )   &    |-  (
 ( ch  /\  ta )  ->  et )   =>    |-  ( ( ph  /\ 
 th  /\  ps )  ->  et )
 
Theoremeel32131 33217 An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.)
 |-  (
 ( ph  /\  ps  /\  ch )  ->  th )   &    |-  (
 ( ph  /\  ch )  ->  ta )   &    |-  ( ( th  /\ 
 ta )  ->  et )   =>    |-  (
 ( ph  /\  ps  /\  ch )  ->  et )
 
Theoremeel221 33218 syl2an 477 with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016.)
 |-  ( ph  ->  ps )   &    |-  ( ( ch 
 /\  ph )  ->  th )   &    |-  (
 ( ps  /\  th )  ->  ta )   =>    |-  ( ( ch  /\  ph )  ->  ta )
 
Theoremeel0321old 33219 el0321old 33220 without virtual deductions. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ph   &    |-  ( ( ps 
 /\  ch  /\  th )  ->  ta )   &    |-  ( ( ph  /\ 
 ta )  ->  et )   =>    |-  (
 ( ps  /\  ch  /\ 
 th )  ->  et )
 
Theoremel0321old 33220 A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ph   &    |-  (. (. ps ,. ch ,. th ).  ->.  ta
 ).   &    |-  ( ( ph  /\  ta )  ->  et )   =>    |-  (. (. ps ,. ch ,. th ).  ->.  et
 ).
 
Theoremeel2122old 33221 el2122old 33222 without virtual deductions. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ph  /\  ps )  ->  ch )   &    |-  ( ps  ->  th )   &    |-  ( ps  ->  ta )   &    |-  ( ( ch 
 /\  th  /\  ta )  ->  et )   =>    |-  ( ( ph  /\  ps )  ->  et )
 
Theoremel2122old 33222 A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (. (. ph
 ,. ps ).  ->.  ch ).   &    |-  (. ps  ->.  th
 ).   &    |- 
 (. ps  ->.  ta ).   &    |-  ( ( ch 
 /\  th  /\  ta )  ->  et )   =>    |- 
 (. (. ph ,. ps ).  ->.  et ).
 
Theoremeel0001 33223 An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.)
 |-  ph   &    |-  ps   &    |-  ch   &    |-  ( th  ->  ta )   &    |-  ( ( ( ( ph  /\  ps )  /\  ch )  /\  ta )  ->  et )   =>    |-  ( th  ->  et )
 
Theoremeel0000 33224 Elimination rule similar to mp4an 673, except with a left-nested conjunction unification theorem. (Contributed by Alan Sare, 17-Oct-2017.)
 |-  ph   &    |-  ps   &    |-  ch   &    |-  th   &    |-  ( ( ( ( ph  /\  ps )  /\  ch )  /\  th )  ->  ta )   =>    |-  ta
 
Theoremeel1111 33225 4 hypothesis elimination deduction for an assertion with a singleton virtual hypothesis collection. Similar to syl112anc 1231 except the unification theorem uses left-nested conjunction. (Contributed by Alan Sare, 17-Oct-2017.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ( ( ( ps  /\  ch )  /\  th )  /\  ta )  ->  et )   =>    |-  ( ph  ->  et )
 
Theoremeel00001 33226 An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.)
 |-  ph   &    |-  ps   &    |-  ch   &    |-  th   &    |-  ( ta  ->  et )   &    |-  ( ( ( ( ( ph  /\  ps )  /\  ch )  /\  th )  /\  et )  ->  ze )   =>    |-  ( ta  ->  ze )
 
Theoremeel00000 33227 Elimination rule similar eel0000 33224, except with five hpothesis steps (Contributed by Alan Sare, 17-Oct-2017.)
 |-  ph   &    |-  ps   &    |-  ch   &    |-  th   &    |-  ta   &    |-  ( ( ( ( ( ph  /\  ps )  /\  ch )  /\  th )  /\  ta )  ->  et )   =>    |- 
 et
 
Theoremeel11111 33228 5 hypothesis elimination deduction for an assertion with a singleton virtual hypothesis collection. Similar to syl113anc 1239 except the unification theorem uses left-nested conjunction. (Contributed by Alan Sare, 17-Oct-2017.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ( ( ( ( ps  /\  ch )  /\  th )  /\  ta )  /\  et )  ->  ze )   =>    |-  ( ph  ->  ze )
 
Theoreme12 33229 A virtual deduction elimination rule (see sylsyld 56). (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (. ph  ->.  ps
 ).   &    |- 
 (. ph ,. ch  ->.  th ).   &    |-  ( ps  ->  ( th  ->  ta ) )   =>    |- 
 (. ph ,. ch  ->.  ta ).
 
Theoreme12an 33230 Conjunction form of e12 33229 (see syl6an 545). (Contributed by Alan Sare, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (. ph  ->.  ps
 ).   &    |- 
 (. ph ,. ch  ->.  th ).   &    |-  (
 ( ps  /\  th )  ->  ta )   =>    |- 
 (. ph ,. ch  ->.  ta ).
 
Theoremel12 33231 Virtual deduction form of syl2an 477. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (. ph  ->.  ps
 ).   &    |- 
 (. ta  ->.  ch ).   &    |-  ( ( ps 
 /\  ch )  ->  th )   =>    |-  (. (. ph
 ,. ta ).  ->.  th ).
 
Theoreme20 33232 A virtual deduction elimination rule (see syl6mpi 62). (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (. ph ,. ps  ->.  ch ).   &    |-  th   &    |-  ( ch  ->  ( th  ->  ta )
 )   =>    |- 
 (. ph ,. ps  ->.  ta ).
 
Theoreme20an 33233 Conjunction form of e20 33232. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (. ph ,. ps  ->.  ch ).   &    |-  th   &    |-  ( ( ch 
 /\  th )  ->  ta )   =>    |-  (. ph ,. ps  ->.  ta ).
 
Theoremee20an 33234 e20an 33233 without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  th   &    |-  ( ( ch 
 /\  th )  ->  ta )   =>    |-  ( ph  ->  ( ps  ->  ta ) )
 
Theoreme21 33235 A virtual deduction elimination rule (see syl6ci 65). (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (. ph ,. ps  ->.  ch ).   &    |-  (. ph  ->.  th ).   &    |-  ( ch  ->  ( th  ->  ta ) )   =>    |- 
 (. ph ,. ps  ->.  ta ).
 
Theoreme21an 33236 Conjunction form of e21 33235. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (. ph ,. ps  ->.  ch ).   &    |-  (. ph  ->.  th ).   &    |-  (
 ( ch  /\  th )  ->  ta )   =>    |- 
 (. ph ,. ps  ->.  ta ).
 
Theoremee21an 33237 e21an 33236 without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( ph  ->  th )   &    |-  ( ( ch 
 /\  th )  ->  ta )   =>    |-  ( ph  ->  ( ps  ->  ta ) )
 
Theoreme333 33238 A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (. ph ,. ps ,. ch  ->.  th ).   &    |-  (. ph ,. ps ,. ch  ->.  ta ).   &    |-  (. ph ,. ps ,. ch  ->.  et ).   &    |-  ( th  ->  ( ta  ->  ( et  ->  ze )
 ) )   =>    |- 
 (. ph ,. ps ,. ch  ->.  ze ).
 
Theoreme33 33239 A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (. ph ,. ps ,. ch  ->.  th ).   &    |-  (. ph ,. ps ,. ch  ->.  ta ).   &    |-  ( th  ->  ( ta  ->  et ) )   =>    |- 
 (. ph ,. ps ,. ch  ->.  et ).
 
Theoreme33an 33240 Conjunction form of e33 33239. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (. ph ,. ps ,. ch  ->.  th ).   &    |-  (. ph ,. ps ,. ch  ->.  ta ).   &    |-  (
 ( th  /\  ta )  ->  et )   =>    |- 
 (. ph ,. ps ,. ch  ->.  et ).
 
Theoremee33an 33241 e33an 33240 without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  th )
 ) )   &    |-  ( ph  ->  ( ps  ->  ( ch  ->  ta ) ) )   &    |-  ( ( th  /\  ta )  ->  et )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  et )
 ) )
 
Theoreme3 33242 Meta-connective form of syl8 70. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (. ph ,. ps ,. ch  ->.  th ).   &    |-  ( th  ->  ta )   =>    |- 
 (. ph ,. ps ,. ch  ->.  ta ).
 
Theoreme3bi 33243 Biconditional form of e3 33242. syl8ib 231 is e3bi 33243 without virtual deductions. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (. ph ,. ps ,. ch  ->.  th ).   &    |-  ( th 
 <->  ta )   =>    |- 
 (. ph ,. ps ,. ch  ->.  ta ).
 
Theoreme3bir 33244 Right biconditional form of e3 33242. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (. ph ,. ps ,. ch  ->.  th ).   &    |-  ( ta 
 <-> 
 th )   =>    |- 
 (. ph ,. ps ,. ch  ->.  ta ).
 
Theoreme03 33245 A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ph   &    |-  (. ps ,. ch ,. th  ->.  ta ).   &    |-  ( ph  ->  ( ta  ->  et ) )   =>    |- 
 (. ps ,. ch ,. th  ->.  et ).
 
Theoremee03 33246 e03 33245 without virtual deductions. (Contributed by Alan Sare, 17-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ph   &    |-  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) )   &    |-  ( ph  ->  ( ta  ->  et ) )   =>    |-  ( ps  ->  ( ch  ->  ( th  ->  et ) ) )
 
Theoreme03an 33247 Conjunction form of e03 33245. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ph   &    |-  (. ps ,. ch ,. th  ->.  ta ).   &    |-  (
 ( ph  /\  ta )  ->  et )   =>    |- 
 (. ps ,. ch ,. th  ->.  et ).
 
Theoremee03an 33248 Conjunction form of ee03 33246. (Contributed by Alan Sare, 18-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ph   &    |-  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) )   &    |-  ( ( ph  /\  ta )  ->  et )   =>    |-  ( ps  ->  ( ch  ->  ( th  ->  et ) ) )
 
Theoreme30 33249 A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (. ph ,. ps ,. ch  ->.  th ).   &    |-  ta   &    |-  ( th  ->  ( ta  ->  et ) )   =>    |- 
 (. ph ,. ps ,. ch  ->.  et ).
 
Theoremee30 33250 e30 33249 without virtual deductions. (Contributed by Alan Sare, 17-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  th )
 ) )   &    |-  ta   &    |-  ( th  ->  ( ta  ->  et )
 )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  et ) ) )
 
Theoreme30an 33251 A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (. ph ,. ps ,. ch  ->.  th ).   &    |-  ta   &    |-  (
 ( th  /\  ta )  ->  et )   =>    |- 
 (. ph ,. ps ,. ch  ->.  et ).
 
Theoremee30an 33252 Conjunction form of ee30 33250. (Contributed by Alan Sare, 17-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  th )
 ) )   &    |-  ta   &    |-  ( ( th  /\ 
 ta )  ->  et )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  et )
 ) )
 
Theoreme13 33253 A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (. ph  ->.  ps
 ).   &    |- 
 (. ph ,. ch ,. th  ->.  ta ).   &    |-  ( ps  ->  ( ta  ->  et )
 )   =>    |- 
 (. ph ,. ch ,. th  ->.  et ).
 
Theoreme13an 33254 A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (. ph  ->.  ps
 ).   &    |- 
 (. ph ,. ch ,. th  ->.  ta ).   &    |-  ( ( ps 
 /\  ta )  ->  et )   =>    |-  (. ph ,. ch ,. th  ->.  et ).
 
Theoremee13an 33255 e13an 33254 without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ( ch  ->  ( th  ->  ta ) ) )   &    |-  ( ( ps  /\  ta )  ->  et )   =>    |-  ( ph  ->  ( ch  ->  ( th  ->  et )
 ) )
 
Theoreme31 33256 A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (. ph ,. ps ,. ch  ->.  th ).   &    |-  (. ph  ->.  ta
 ).   &    |-  ( th  ->  ( ta  ->  et ) )   =>    |-  (.
 ph ,. ps ,. ch  ->.  et
 ).
 
Theoremee31 33257 e31 33256 without virtual deductions. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  th )
 ) )   &    |-  ( ph  ->  ta )   &    |-  ( th  ->  ( ta  ->  et )
 )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  et ) ) )
 
Theoreme31an 33258 A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (. ph ,. ps ,. ch  ->.  th ).   &    |-  (. ph  ->.  ta
 ).   &    |-  ( ( th  /\  ta )  ->  et )   =>    |-  (. ph ,. ps ,. ch  ->.  et ).
 
Theoremee31an 33259 e31an 33258 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  th )
 ) )   &    |-  ( ph  ->  ta )   &    |-  ( ( th  /\ 
 ta )  ->  et )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  et )
 ) )
 
Theoreme23 33260 A virtual deduction elimination rule (see syl10 73). (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (. ph ,. ps  ->.  ch ).   &    |-  (. ph ,. ps ,. th  ->.  ta ).   &    |-  ( ch  ->  ( ta  ->  et ) )   =>    |- 
 (. ph ,. ps ,. th  ->.  et ).
 
Theoreme23an 33261 A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (. ph ,. ps  ->.  ch ).   &    |-  (. ph ,. ps ,. th  ->.  ta ).   &    |-  (
 ( ch  /\  ta )  ->  et )   =>    |-  (. ph ,. ps ,. th  ->.  et ).
 
Theoremee23an 33262 e23an 33261 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( ph  ->  ( ps  ->  ( th  ->  ta ) ) )   &    |-  ( ( ch  /\  ta )  ->  et )   =>    |-  ( ph  ->  ( ps  ->  ( th  ->  et )
 ) )
 
Theoreme32 33263 A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (. ph ,. ps ,. ch  ->.  th ).   &    |-  (. ph ,. ps  ->.  ta ).   &    |-  ( th  ->  ( ta  ->  et )
 )   =>    |- 
 (. ph ,. ps ,. ch  ->.  et ).
 
Theoremee32 33264 e32 33263 without virtual deductions. (Contributed by Alan Sare, 18-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  th )
 ) )   &    |-  ( ph  ->  ( ps  ->  ta )
 )   &    |-  ( th  ->  ( ta  ->  et ) )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  et )
 ) )
 
Theoreme32an 33265 A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (. ph ,. ps ,. ch  ->.  th ).   &    |-  (. ph ,. ps  ->.  ta ).   &    |-  ( ( th  /\ 
 ta )  ->  et )   =>    |-  (. ph ,. ps ,. ch  ->.  et ).
 
Theoremee32an 33266 e33an 33240 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  th )
 ) )   &    |-  ( ph  ->  ( ps  ->  ta )
 )   &    |-  ( ( th  /\  ta )  ->  et )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  et )
 ) )
 
Theoreme123 33267 A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (. ph  ->.  ps
 ).   &    |- 
 (. ph ,. ch  ->.  th ).   &    |-  (. ph ,. ch ,. ta  ->.  et ).   &    |-  ( ps  ->  ( th  ->  ( et  ->  ze )
 ) )   =>    |- 
 (. ph ,. ch ,. ta  ->.  ze ).
 
Theoremee123 33268 e123 33267 without virtual deductions. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ( ch  ->  th )
 )   &    |-  ( ph  ->  ( ch  ->  ( ta  ->  et ) ) )   &    |-  ( ps  ->  ( th  ->  ( et  ->  ze )
 ) )   =>    |-  ( ph  ->  ( ch  ->  ( ta  ->  ze ) ) )
 
Theoremel123 33269 A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (. ph  ->.  ps
 ).   &    |- 
 (. ch  ->.  th ).   &    |-  (. ta  ->.  et ).   &    |-  (
 ( ps  /\  th  /\ 
 et )  ->  ze )   =>    |-  (. (. ph
 ,. ch ,. ta ).  ->.  ze
 ).
 
Theoreme233 33270 A virtual deduction elimination rule. (Contributed by Alan Sare, 29-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (. ph ,. ps  ->.  ch ).   &    |-  (. ph ,. ps ,. th  ->.  ta ).   &    |-  (. ph ,. ps ,. th  ->.  et ).   &    |-  ( ch  ->  ( ta  ->  ( et  ->  ze )
 ) )   =>    |- 
 (. ph ,. ps ,. th  ->.  ze ).
 
Theoreme323 33271 A virtual deduction elimination rule. (Contributed by Alan Sare, 17-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (. ph ,. ps ,. ch  ->.  th ).   &    |-  (. ph ,. ps  ->.  ta ).   &    |-  (. ph ,. ps ,. ch  ->.  et ).   &    |-  ( th  ->  ( ta  ->  ( et  ->  ze )
 ) )   =>    |- 
 (. ph ,. ps ,. ch  ->.  ze ).
 
Theoreme000 33272 A virtual deduction elimination rule. The non-virtual deduction form of e000 33272 is the virtual deduction form. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ph   &    |-  ps   &    |-  ch   &    |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )   =>    |-  th
 
Theoreme00 33273 Elimination rule identical to mp2 9. The non-virtual deduction form is the virtual deduction form, which is mp2 9. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ph   &    |-  ps   &    |-  ( ph  ->  ( ps  ->  ch )
 )   =>    |- 
 ch
 
Theoreme00an 33274 Elimination rule identical to mp2an 672. The non-virtual deduction form is the virtual deduction form, which is mp2an 672. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ph   &    |-  ps   &    |-  ( ( ph  /\ 
 ps )  ->  ch )   =>    |-  ch
 
Theoremeel00cT 33275 An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ph   &    |-  ps   &    |-  ( ( ph  /\ 
 ps )  ->  ch )   =>    |-  ( T.  ->  ch )
 
TheoremeelTT 33276 An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( T.  ->  ph )   &    |-  ( T.  ->  ps )   &    |-  ( ( ph  /\ 
 ps )  ->  ch )   =>    |-  ch
 
Theoreme0a 33277 Elimination rule identical to ax-mp 5. The non-virtual deduction form is the virtual deduction form, which is ax-mp 5. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ph   &    |-  ( ph  ->  ps )   =>    |- 
 ps
 
TheoremeelT 33278 An elimination deduction. (Contributed by Alan Sare, 5-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( T.  ->  ph )   &    |-  ( ph  ->  ps )   =>    |- 
 ps
 
Theoremeel0cT 33279 An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ph   &    |-  ( ph  ->  ps )   =>    |-  ( T.  ->  ps )
 
TheoremeelT0 33280 An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( T.  ->  ph )   &    |-  ps   &    |-  ( ( ph  /\ 
 ps )  ->  ch )   =>    |-  ch
 
Theoreme0bi 33281 Elimination rule identical to mpbi 208. The non-virtual deduction form is the virtual deduction form, which is mpbi 208. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ph   &    |-  ( ph  <->  ps )   =>    |- 
 ps
 
Theoreme0bir 33282 Elimination rule identical to mpbir 209. The non-virtual deduction form is the virtual deduction form, which is mpbir 209. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ph   &    |-  ( ps  <->  ph )   =>    |- 
 ps
 
Theoremuun0.1 33283 Convention notation form of un0.1 33284. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( T.  ->  ph )   &    |-  ( ps  ->  ch )   &    |-  ( ( T. 
 /\  ps )  ->  th )   =>    |-  ( ps  ->  th )
 
Theoremun0.1 33284 T. is the constant true, a tautology (see df-tru 1384). Kleene's "empty conjunction" is logically equivalent to T.. In a virtual deduction we shall interpret T. to be the empty wff or the empty collection of virtual hypotheses. T. in a virtual deduction translated into conventional notation we shall interpret to be Kleene's empty conjunction. If  th is true given the empty collection of virtual hypotheses and another collection of virtual hypotheses, then it is true given only the other collection of virtual hypotheses. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (. T.  ->.  ph ).   &    |-  (.
 ps 
 ->.  ch ).   &    |-  (. (. T.  ,. ps ).  ->.  th ).   =>    |-  (. ps  ->.  th ).
 
TheoremuunT1 33285 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 3-Dec-2015.) Proof was revised to accomodate a possible future version of df-tru 1384. (Revised by David A. Wheeler, 8-May-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( T.  /\  ph )  ->  ps )   =>    |-  ( ph  ->  ps )
 
TheoremuunT1p1 33286 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ph  /\ T.  )  ->  ps )   =>    |-  ( ph  ->  ps )
 
TheoremuunT21 33287 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( T.  /\  ( ph  /\  ps ) ) 
 ->  ch )   =>    |-  ( ( ph  /\  ps )  ->  ch )
 
Theoremuun121 33288 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ph  /\  ( ph  /\ 
 ps ) )  ->  ch )   =>    |-  ( ( ph  /\  ps )  ->  ch )
 
Theoremuun121p1 33289 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ( ph  /\  ps )  /\  ph )  ->  ch )   =>    |-  (
 ( ph  /\  ps )  ->  ch )
 
Theoremuun132 33290 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ph  /\  ( ps 
 /\  ch ) )  ->  th )   =>    |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )
 
Theoremuun132p1 33291 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ( ps  /\  ch )  /\  ph )  ->  th )   =>    |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )
 
Theoremanabss7p1 33292 A deduction unionizing a non-unionized collection of virtual hypotheses. This would have been named uun221 if the 0th permutation did not exist in set.mm as anabss7 819. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ( ps  /\  ph )  /\  ph )  ->  ch )   =>    |-  ( ( ps  /\  ph )  ->  ch )
 
Theoremun10 33293 A unionizing deduction (Contributed by Alan Sare, 28-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (. (. ph
 ,. T.  ).  ->.  ps ).   =>    |-  (. ph  ->.  ps ).
 
Theoremun01 33294 A unionizing deduction (Contributed by Alan Sare, 28-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (. (. T.  ,. ph ).  ->.  ps ).   =>    |-  (. ph  ->.  ps ).
 
Theoremun2122 33295 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ( ph  /\  ps )  /\  ps  /\  ps )  ->  ch )   =>    |-  ( ( ph  /\  ps )  ->  ch )
 
Theoremuun2131 33296 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ( ph  /\  ps )  /\  ( ph  /\  ch ) )  ->  th )   =>    |-  (
 ( ph  /\  ps  /\  ch )  ->  th )
 
Theoremuun2131p1 33297 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ( ph  /\  ch )  /\  ( ph  /\  ps ) )  ->  th )   =>    |-  (
 ( ph  /\  ps  /\  ch )  ->  th )
 
TheoremuunTT1 33298 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( T.  /\ T.  /\  ph )  ->  ps )   =>    |-  ( ph  ->  ps )
 
TheoremuunTT1p1 33299 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( T.  /\  ph  /\ T.  )  ->  ps )   =>    |-  ( ph  ->  ps )
 
TheoremuunTT1p2 33300 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ph  /\ T.  /\ T.  )  ->  ps )   =>    |-  ( ph  ->  ps )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37598
  Copyright terms: Public domain < Previous  Next >