HomeHome Metamath Proof Explorer
Theorem List (p. 313 of 328)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-21514)
  Hilbert Space Explorer  Hilbert Space Explorer
(21515-23037)
  Users' Mathboxes  Users' Mathboxes
(23038-32776)
 

Theorem List for Metamath Proof Explorer - 31201-31300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcdleme31fv 31201* Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 10-Feb-2013.)
 |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
 .\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
 ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   &    |-  C  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
 .\/  ( X  ./\  W ) )  =  X )  ->  z  =  ( N  .\/  ( X  ./\ 
 W ) ) ) )   =>    |-  ( X  e.  B  ->  ( F `  X )  =  if (
 ( P  =/=  Q  /\  -.  X  .<_  W ) ,  C ,  X ) )
 
Theoremcdleme31fv1 31202* Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 10-Feb-2013.)
 |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
 .\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
 ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   &    |-  C  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
 .\/  ( X  ./\  W ) )  =  X )  ->  z  =  ( N  .\/  ( X  ./\ 
 W ) ) ) )   =>    |-  ( ( X  e.  B  /\  ( P  =/=  Q 
 /\  -.  X  .<_  W ) )  ->  ( F `  X )  =  C )
 
Theoremcdleme31fv1s 31203* Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 25-Feb-2013.)
 |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
 .\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
 ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   =>    |-  ( ( X  e.  B  /\  ( P  =/=  Q  /\  -.  X  .<_  W ) ) 
 ->  ( F `  X )  =  [_ X  /  x ]_ O )
 
Theoremcdleme31fv2 31204* Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 23-Feb-2013.)
 |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   =>    |-  ( ( X  e.  B  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W ) ) 
 ->  ( F `  X )  =  X )
 
Theoremcdleme31id 31205* Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 18-Apr-2013.)
 |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   =>    |-  ( ( X  e.  B  /\  P  =  Q )  ->  ( F `  X )  =  X )
 
Theoremcdlemefrs29pre00 31206 ***START OF VALUE AT ATOM STUFF TO REPLACE ONES BELOW*** FIX COMMENT. TODO: see if this is the optimal utility theorem using lhpmat 30841. (Contributed by NM, 29-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  (
 s  =  R  ->  (
 ph 
 <->  ps ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ps )  /\  s  e.  A )  ->  ( ( ( -.  s  .<_  W  /\  ph )  /\  ( s 
 .\/  ( R  ./\  W ) )  =  R ) 
 <->  ( -.  s  .<_  W 
 /\  ( s  .\/  ( R  ./\  W ) )  =  R ) ) )
 
Theoremcdlemefrs29bpre0 31207* TODO fix comment. (Contributed by NM, 29-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  (
 s  =  R  ->  (
 ph 
 <->  ps ) )   &    |-  (
 ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q 
 /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph )
 ) )  ->  N  e.  B )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  ps )  ->  ( A. s  e.  A  ( ( ( -.  s  .<_  W  /\  ph )  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R  ./\  W ) ) )  <->  z  =  [_ R  /  s ]_ N ) )
 
Theoremcdlemefrs29bpre1 31208* TODO FIX COMMENT (Contributed by NM, 29-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  (
 s  =  R  ->  (
 ph 
 <->  ps ) )   &    |-  (
 ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q 
 /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph )
 ) )  ->  N  e.  B )   &    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( P  =/=  Q 
 /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  [_ R  /  s ]_ N  e.  B )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  ps )  ->  E. z  e.  B  A. s  e.  A  ( ( ( -.  s  .<_  W  /\  ph )  /\  ( s 
 .\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R  ./\ 
 W ) ) ) )
 
Theoremcdlemefrs29cpre1 31209* TODO FIX COMMENT (Contributed by NM, 29-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  (
 s  =  R  ->  (
 ph 
 <->  ps ) )   &    |-  (
 ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q 
 /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph )
 ) )  ->  N  e.  B )   &    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( P  =/=  Q 
 /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  [_ R  /  s ]_ N  e.  B )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  ps )  ->  E! z  e.  B  A. s  e.  A  ( ( ( -.  s  .<_  W  /\  ph )  /\  ( s 
 .\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R  ./\ 
 W ) ) ) )
 
Theoremcdlemefrs29clN 31210* TODO: NOT USED? Show closure of the unique element in cdlemefrs29cpre1 31209. (Contributed by NM, 29-Mar-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  (
 s  =  R  ->  (
 ph 
 <->  ps ) )   &    |-  (
 ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q 
 /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph )
 ) )  ->  N  e.  B )   &    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( P  =/=  Q 
 /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  [_ R  /  s ]_ N  e.  B )   &    |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( R  ./\ 
 W ) )  =  R )  ->  z  =  ( N  .\/  ( R  ./\  W ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  ps )  ->  O  e.  B )
 
Theoremcdlemefrs32fva 31211* Part of proof of Lemma E in [Crawley] p. 113. Value of  F at an atom not under  W. TODO: FIX COMMENT TODO: consolidate uses of lhpmat 30841 here and elsewhere, and presence/absence of  s 
.<_  ( P  .\/  Q
) term. Also, why can proof be shortened with cdleme29cl 31188? What is difference from cdlemefs27cl 31224? (Contributed by NM, 29-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  (
 s  =  R  ->  (
 ph 
 <->  ps ) )   &    |-  (
 ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q 
 /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph )
 ) )  ->  N  e.  B )   &    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( P  =/=  Q 
 /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  [_ R  /  s ]_ N  e.  B )   &    |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  ps )  ->  [_ R  /  x ]_ O  =  [_ R  /  s ]_ N )
 
Theoremcdlemefrs32fva1 31212* Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT (Contributed by NM, 29-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  (
 s  =  R  ->  (
 ph 
 <->  ps ) )   &    |-  (
 ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q 
 /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph )
 ) )  ->  N  e.  B )   &    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( P  =/=  Q 
 /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  [_ R  /  s ]_ N  e.  B )   &    |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( P  =/=  Q 
 /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  ( F `  R )  =  [_ R  /  s ]_ N )
 
Theoremcdlemefr29exN 31213* Lemma for cdlemefs29bpre1N 31228. (Compare cdleme25a 31164.) TODO: FIX COMMENT TODO: IS THIS NEEDED? (Contributed by NM, 28-Mar-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   =>    |-  (
 ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) 
 /\  A. s  e.  A  C  e.  B )  ->  E. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
 .\/  ( X  ./\  W ) )  =  X )  /\  ( C  .\/  ( X  ./\  W ) )  e.  B ) )
 
Theoremcdlemefr27cl 31214 Part of proof of Lemma E in [Crawley] p. 113. Closure of  N. (Contributed by NM, 23-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  N  =  if ( s  .<_  ( P 
 .\/  Q ) ,  I ,  C )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  ( s  e.  A  /\  -.  s  .<_  ( P 
 .\/  Q )  /\  P  =/=  Q ) )  ->  N  e.  B )
 
Theoremcdlemefr32sn2aw 31215* Show that  [_ R  / 
s ]_ N is an atom not under  W when  -.  R  .<_  ( P  .\/  Q ). (Contributed by NM, 28-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  N  =  if ( s  .<_  ( P 
 .\/  Q ) ,  I ,  C )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  -.  R  .<_  ( P  .\/  Q )
 )  ->  ( [_ R  /  s ]_ N  e.  A  /\  -.  [_ R  /  s ]_ N  .<_  W ) )
 
Theoremcdlemefr32snb 31216* Show closure of  [_ R  /  s ]_ N. (Contributed by NM, 28-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  N  =  if ( s  .<_  ( P 
 .\/  Q ) ,  I ,  C )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  -.  R  .<_  ( P  .\/  Q )
 )  ->  [_ R  /  s ]_ N  e.  B )
 
Theoremcdlemefr29bpre0N 31217* TODO fix comment. (Contributed by NM, 28-Mar-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  N  =  if ( s  .<_  ( P 
 .\/  Q ) ,  I ,  C )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  -.  R  .<_  ( P  .\/  Q )
 )  ->  ( A. s  e.  A  (
 ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q ) )  /\  ( s 
 .\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R  ./\ 
 W ) ) )  <-> 
 z  =  [_ R  /  s ]_ N ) )
 
Theoremcdlemefr29clN 31218* Show closure of the unique element in cdleme29c 31187. TODO fix comment. TODO Not needed? (Contributed by NM, 29-Mar-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  N  =  if ( s  .<_  ( P 
 .\/  Q ) ,  I ,  C )   &    |-  O  =  (
 iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
 .\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R  ./\ 
 W ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  -.  R  .<_  ( P  .\/  Q )
 )  ->  O  e.  B )
 
Theoremcdleme43frv1snN 31219* Value of  [_ R  / 
s ]_ N when  -.  R  .<_  ( P  .\/  Q
). (Contributed by NM, 30-Mar-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  N  =  if ( s  .<_  ( P 
 .\/  Q ) ,  I ,  C )   &    |-  X  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
 ) )   =>    |-  ( ( R  e.  A  /\  -.  R  .<_  ( P  .\/  Q )
 )  ->  [_ R  /  s ]_ N  =  X )
 
Theoremcdlemefr32fvaN 31220* Part of proof of Lemma E in [Crawley] p. 113. Value of  F at an atom not under  W. TODO: FIX COMMENT (Contributed by NM, 29-Mar-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  N  =  if ( s  .<_  ( P 
 .\/  Q ) ,  I ,  C )   &    |-  O  =  (
 iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
 .\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
 ./\  W ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  -.  R  .<_  ( P  .\/  Q )
 )  ->  [_ R  /  x ]_ O  =  [_ R  /  s ]_ N )
 
Theoremcdlemefr32fva1 31221* Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT (Contributed by NM, 29-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  N  =  if ( s  .<_  ( P 
 .\/  Q ) ,  I ,  C )   &    |-  O  =  (
 iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
 .\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
 ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( P  =/=  Q 
 /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  -.  R  .<_  ( P  .\/  Q ) )  ->  ( F `  R )  = 
 [_ R  /  s ]_ N )
 
Theoremcdlemefr31fv1 31222* Value of  ( F `  R ) when  -.  R  .<_  ( P  .\/  Q
). TODO This may be useful for shortening others that now use riotasv 6368 3d . TODO: FIX COMMENT (Contributed by NM, 30-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  N  =  if ( s  .<_  ( P 
 .\/  Q ) ,  I ,  C )   &    |-  O  =  (
 iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
 .\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
 ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   &    |-  X  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
 ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  -.  R  .<_  ( P  .\/  Q )
 )  ->  ( F `  R )  =  X )
 
Theoremcdlemefs29pre00N 31223 FIX COMMENT. TODO: see if this is the optimal utility theorem using lhpmat 30841. (Contributed by NM, 27-Mar-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   =>    |-  (
 ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  R  .<_  ( P  .\/  Q ) )  /\  s  e.  A )  ->  (
 ( ( -.  s  .<_  W  /\  s  .<_  ( P  .\/  Q )
 )  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  <-> 
 ( -.  s  .<_  W 
 /\  ( s  .\/  ( R  ./\  W ) )  =  R ) ) )
 
Theoremcdlemefs27cl 31224* Part of proof of Lemma E in [Crawley] p. 113. Closure of  N. TODO FIX COMMENT This is the start of a re-proof of cdleme27cl 31177 etc. with the  s  .<_  ( P 
.\/  Q ) condition (so as to not have the  C hypothesis). (Contributed by NM, 24-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ u  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  u  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  (
 ( s  e.  A  /\  -.  s  .<_  W ) 
 /\  s  .<_  ( P 
 .\/  Q )  /\  P  =/=  Q ) )  ->  N  e.  B )
 
Theoremcdlemefs32sn1aw 31225* Show that  [_ R  / 
s ]_ N is an atom not under  W when  R  .<_  ( P 
.\/  Q ). (Contributed by NM, 24-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   &    |-  Y  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( R  .\/  t )  ./\ 
 W ) ) )   &    |-  Z  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  Y ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( P  =/=  Q 
 /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  ( [_ R  /  s ]_ N  e.  A  /\  -.  [_ R  /  s ]_ N  .<_  W ) )
 
Theoremcdlemefs32snb 31226* Show closure of  [_ R  /  s ]_ N. (Contributed by NM, 24-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  R  .<_  ( P 
 .\/  Q ) )  ->  [_ R  /  s ]_ N  e.  B )
 
Theoremcdlemefs29bpre0N 31227* TODO FIX COMMENT (Contributed by NM, 26-Mar-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  R  .<_  ( P 
 .\/  Q ) )  ->  ( A. s  e.  A  ( ( ( -.  s  .<_  W  /\  s  .<_  ( P  .\/  Q ) )  /\  ( s 
 .\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R  ./\ 
 W ) ) )  <-> 
 z  =  [_ R  /  s ]_ N ) )
 
Theoremcdlemefs29bpre1N 31228* TODO FIX COMMENT (Contributed by NM, 27-Mar-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  R  .<_  ( P 
 .\/  Q ) )  ->  E. z  e.  B  A. s  e.  A  ( ( ( -.  s  .<_  W  /\  s  .<_  ( P  .\/  Q )
 )  /\  ( s  .\/  ( R  ./\  W ) )  =  R ) 
 ->  z  =  ( N  .\/  ( R  ./\  W ) ) ) )
 
Theoremcdlemefs29cpre1N 31229* TODO FIX COMMENT (Contributed by NM, 26-Mar-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  R  .<_  ( P 
 .\/  Q ) )  ->  E! z  e.  B  A. s  e.  A  ( ( ( -.  s  .<_  W  /\  s  .<_  ( P  .\/  Q )
 )  /\  ( s  .\/  ( R  ./\  W ) )  =  R ) 
 ->  z  =  ( N  .\/  ( R  ./\  W ) ) ) )
 
Theoremcdlemefs29clN 31230* Show closure of the unique element in cdleme29c 31187. (Contributed by NM, 27-Mar-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   &    |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( R  ./\ 
 W ) )  =  R )  ->  z  =  ( N  .\/  ( R  ./\  W ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  R  .<_  ( P 
 .\/  Q ) )  ->  O  e.  B )
 
Theoremcdleme43fsv1snlem 31231* Value of  [_ R  / 
s ]_ N when  R  .<_  ( P  .\/  Q ). (Contributed by NM, 30-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   &    |-  Y  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\ 
 W ) ) )   &    |-  Z  =  ( ( P  .\/  Q )  ./\  ( Y  .\/  ( ( R  .\/  S )  ./\ 
 W ) ) )   &    |-  V  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( R  .\/  t )  ./\ 
 W ) ) )   &    |-  X  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  V ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( P  =/=  Q 
 /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) 
 /\  ( R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P 
 .\/  Q ) ) ) 
 ->  [_ R  /  s ]_ N  =  Z )
 
Theoremcdleme43fsv1sn 31232* Value of  [_ R  / 
s ]_ N when  R  .<_  ( P  .\/  Q ). (Contributed by NM, 30-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   &    |-  Y  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\ 
 W ) ) )   &    |-  Z  =  ( ( P  .\/  Q )  ./\  ( Y  .\/  ( ( R  .\/  S )  ./\ 
 W ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R 
 .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q )
 ) )  ->  [_ R  /  s ]_ N  =  Z )
 
Theoremcdlemefs32fvaN 31233* Part of proof of Lemma E in [Crawley] p. 113. Value of  F at an atom not under  W. TODO: FIX COMMENT TODO: consolidate uses of lhpmat 30841 here and elsewhere, and presence/absence of  s 
.<_  ( P  .\/  Q
) term. Also, why can proof be shortened with cdleme27cl 31177? What is difference from cdlemefs27cl 31224? (Contributed by NM, 29-Mar-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   &    |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  R  .<_  ( P 
 .\/  Q ) )  ->  [_ R  /  x ]_ O  =  [_ R  /  s ]_ N )
 
Theoremcdlemefs32fva1 31234* Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT (Contributed by NM, 29-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   &    |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( P  =/=  Q 
 /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  ( F `
  R )  = 
 [_ R  /  s ]_ N )
 
Theoremcdlemefs31fv1 31235* Value of  ( F `  R ) when  R  .<_  ( P  .\/  Q ). TODO This may be useful for shortening others that now use riotasv 6368 3d . TODO: FIX COMMENT. ***END OF VALUE AT ATOM STUFF TO REPLACE ONES BELOW***
       "cdleme3xsn1aw" decreased using "cdlemefs32sn1aw"
       "cdleme32sn1aw" decreased from 3302 to 36 using "cdlemefs32sn1aw".
       "cdleme32sn2aw" decreased from 1687 to 26 using "cdlemefr32sn2aw".
       "cdleme32snaw" decreased from 376 to 375 using "cdlemefs32sn1aw".
       "cdleme32snaw" decreased from 375 to 368 using "cdlemefr32sn2aw".
       "cdleme35sn3a" decreased from 547 to 523 using "cdleme43frv1sn".
       
(Contributed by NM, 27-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   &    |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   &    |-  Y  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
 ) )   &    |-  Z  =  ( ( P  .\/  Q )  ./\  ( Y  .\/  ( ( R  .\/  S )  ./\  W )
 ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R 
 .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q )
 ) )  ->  ( F `  R )  =  Z )
 
Theoremcdlemefr44 31236* Value of f(r) when r is an atom not under pq, using more compact hypotheses. TODO: eliminate and use cdlemefr45 instead? TODO FIX COMMENT (Contributed by NM, 31-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  O  =  (
 iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
 .\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( if ( s  .<_  ( P  .\/  Q ) ,  I ,  [_ s  /  t ]_ D ) 
 .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  O ,  x ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  -.  R  .<_  ( P  .\/  Q )
 )  ->  ( F `  R )  =  [_ R  /  t ]_ D )
 
Theoremcdlemefs44 31237* Value of fs(r) when r is an atom under pq and s is any atom not under pq, using more compact hypotheses. TODO: eliminate and use cdlemefs45 31240 instead TODO FIX COMMENT (Contributed by NM, 31-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  O  =  (
 iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
 .\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( if ( s  .<_  ( P  .\/  Q ) ,  I ,  [_ s  /  t ]_ D ) 
 .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  O ,  x ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( P  =/=  Q 
 /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) 
 /\  ( R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P 
 .\/  Q ) ) ) 
 ->  ( F `  R )  =  [_ R  /  s ]_ [_ S  /  t ]_ E )
 
Theoremcdlemefr45 31238* Value of f(r) when r is an atom not under pq, using very compact hypotheses. TODO FIX COMMENT (Contributed by NM, 1-Apr-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( if ( s 
 .<_  ( P  .\/  Q ) ,  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) ) , 
 [_ s  /  t ]_ D )  .\/  ( x  ./\  W ) ) ) ) ,  x ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  -.  R  .<_  ( P  .\/  Q )
 )  ->  ( F `  R )  =  [_ R  /  t ]_ D )
 
Theoremcdlemefr45e 31239* Explicit expansion of cdlemefr45 31238. TODO: use to shorten cdlemefr45 31238 uses? TODO FIX COMMENT (Contributed by NM, 10-Apr-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( if ( s 
 .<_  ( P  .\/  Q ) ,  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) ) , 
 [_ s  /  t ]_ D )  .\/  ( x  ./\  W ) ) ) ) ,  x ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  -.  R  .<_  ( P  .\/  Q )
 )  ->  ( F `  R )  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
 ) ) )
 
Theoremcdlemefs45 31240* Value of fs(r) when r is an atom under pq and s is any atom not under pq, using very compact hypotheses. TODO FIX COMMENT (Contributed by NM, 1-Apr-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( if ( s 
 .<_  ( P  .\/  Q ) ,  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) ) , 
 [_ s  /  t ]_ D )  .\/  ( x  ./\  W ) ) ) ) ,  x ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R 
 .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q )
 ) )  ->  ( F `  R )  = 
 [_ R  /  s ]_ [_ S  /  t ]_ E )
 
Theoremcdlemefs45ee 31241* Explicit expansion of cdlemefs45 31240. TODO: use to shorten cdlemefs45 31240 uses? Should  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) ) be assigned to a hypothesis letter? TODO FIX COMMENT (Contributed by NM, 10-Apr-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( if ( s 
 .<_  ( P  .\/  Q ) ,  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) ) , 
 [_ s  /  t ]_ D )  .\/  ( x  ./\  W ) ) ) ) ,  x ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R 
 .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q )
 ) )  ->  ( F `  R )  =  ( ( P  .\/  Q )  ./\  ( (
 ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
 ) )  .\/  (
 ( R  .\/  S )  ./\  W ) ) ) )
 
Theoremcdlemefs45eN 31242* Explicit expansion of cdlemefs45 31240. TODO: use to shorten cdlemefs45 31240 uses? TODO FIX COMMENT (Contributed by NM, 10-Apr-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( if ( s 
 .<_  ( P  .\/  Q ) ,  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) ) , 
 [_ s  /  t ]_ D )  .\/  ( x  ./\  W ) ) ) ) ,  x ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R 
 .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q )
 ) )  ->  ( F `  R )  =  ( ( P  .\/  Q )  ./\  ( ( F `  S )  .\/  ( ( R  .\/  S )  ./\  W )
 ) ) )
 
Theoremcdleme32sn1awN 31243* Show that  [_ R  / 
s ]_ N is an atom not under  W when  R  .<_  ( P 
.\/  Q ). (Contributed by NM, 6-Mar-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   &    |-  Y  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( R  .\/  t )  ./\ 
 W ) ) )   &    |-  Z  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  Y ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( P  =/=  Q 
 /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  ( [_ R  /  s ]_ N  e.  A  /\  -.  [_ R  /  s ]_ N  .<_  W ) )
 
Theoremcdleme41sn3a 31244* Show that  [_ R  / 
s ]_ N is under  P  .\/  Q when  R  .<_  ( P 
.\/  Q ). (Contributed by NM, 19-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   &    |-  Y  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( R  .\/  t )  ./\ 
 W ) ) )   &    |-  Z  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  Y ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( P  =/=  Q 
 /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  [_ R  /  s ]_ N  .<_  ( P  .\/  Q )
 )
 
Theoremcdleme32sn2awN 31245* Show that  [_ R  / 
s ]_ N is an atom not under  W when  -.  R  .<_  ( P  .\/  Q ). (Contributed by NM, 6-Mar-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  -.  R  .<_  ( P  .\/  Q )
 )  ->  ( [_ R  /  s ]_ N  e.  A  /\  -.  [_ R  /  s ]_ N  .<_  W ) )
 
Theoremcdleme32snaw 31246* Show that  [_ R  / 
s ]_ N is an atom not under  W. (Contributed by NM, 6-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( [_ R  /  s ]_ N  e.  A  /\  -.  [_ R  /  s ]_ N  .<_  W ) )
 
Theoremcdleme32snb 31247* Show closure of  [_ R  /  s ]_ N. (Contributed by NM, 1-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  [_ R  /  s ]_ N  e.  B )
 
Theoremcdleme32fva 31248* Part of proof of Lemma D in [Crawley] p. 113. Value of  F at an atom not under  W. (Contributed by NM, 2-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   &    |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q )  ->  [_ R  /  x ]_ O  =  [_ R  /  s ]_ N )
 
Theoremcdleme32fva1 31249* Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 2-Mar-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   &    |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q )  ->  ( F `  R )  =  [_ R  /  s ]_ N )
 
Theoremcdleme32fvaw 31250* Show that  ( F `  R ) is an atom not under  W when  R is an atom not under  W. (Contributed by NM, 18-Apr-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   &    |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  (
 ( F `  R )  e.  A  /\  -.  ( F `  R )  .<_  W ) )
 
Theoremcdleme32fvcl 31251* Part of proof of Lemma D in [Crawley] p. 113. Closure of the function  F. (Contributed by NM, 10-Feb-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   &    |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  X  e.  B )  ->  ( F `  X )  e.  B )
 
Theoremcdleme32a 31252* Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 19-Feb-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   &    |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( X  e.  B  /\  ( P  =/=  Q 
 /\  -.  X  .<_  W ) )  /\  (
 ( s  e.  A  /\  -.  s  .<_  W ) 
 /\  ( s  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( F `  X )  =  ( N  .\/  ( X  ./\ 
 W ) ) )
 
Theoremcdleme32b 31253* Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 19-Feb-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   &    |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( X  e.  B  /\  Y  e.  B  /\  ( P  =/=  Q  /\  -.  X  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  ( s  .\/  ( X 
 ./\  W ) )  =  X  /\  X  .<_  Y ) )  ->  ( F `  Y )  =  ( N  .\/  ( Y  ./\  W ) ) )
 
Theoremcdleme32c 31254* Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 19-Feb-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   &    |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( X  e.  B  /\  Y  e.  B  /\  ( P  =/=  Q  /\  -.  X  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  ( s  .\/  ( X 
 ./\  W ) )  =  X  /\  X  .<_  Y ) )  ->  ( F `  X )  .<_  ( F `  Y ) )
 
Theoremcdleme32d 31255* Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 20-Feb-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   &    |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( X  e.  B  /\  Y  e.  B  /\  ( P  =/=  Q  /\  -.  X  .<_  W ) )  /\  X  .<_  Y )  ->  ( F `  X )  .<_  ( F `
  Y ) )
 
Theoremcdleme32e 31256* Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 20-Feb-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   &    |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/=  Q  /\  -.  Y  .<_  W ) ) 
 /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  ( s  .\/  ( Y 
 ./\  W ) )  =  Y  /\  X  .<_  Y ) )  ->  ( F `  X )  .<_  ( F `  Y ) )
 
Theoremcdleme32f 31257* Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 20-Feb-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   &    |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/=  Q  /\  -.  Y  .<_  W ) ) 
 /\  X  .<_  Y ) 
 ->  ( F `  X )  .<_  ( F `  Y ) )
 
Theoremcdleme32le 31258* Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 20-Feb-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W ) ) )   &    |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W ) ) )   &    |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W ) ) )   &    |-  I  =  (
 iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  E ) )   &    |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C )   &    |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  (
 s  .\/  ( x  ./\ 
 W ) )  =  x )  ->  z  =  ( N  .\/  ( x  ./\  W ) ) ) )   &    |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q 
 /\  -.  x  .<_  W ) ,  O ,  x ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( X  e.  B  /\  Y  e.  B )  /\  X  .<_  Y ) 
 ->  ( F `  X )  .<_  ( F `  Y ) )
 
Theoremcdleme35a 31259 Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT (Contributed by NM, 10-Mar-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
 ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  -.  R  .<_  ( P  .\/  Q )
 )  ->  ( F  .\/  U )  =  ( R  .\/  U )
 )
 
Theoremcdleme35fnpq 31260 Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT (Contributed by NM, 19-Mar-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
 ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  -.  R  .<_  ( P  .\/  Q )
 )  ->  -.  F  .<_  ( P  .\/  Q )
 )
 
Theoremcdleme35b 31261 Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT (Contributed by NM, 10-Mar-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
 ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  -.  R  .<_  ( P  .\/  Q )
 )  ->  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
 )  .<_  ( Q  .\/  ( R  .\/  U ) ) )
 
Theoremcdleme35c 31262 Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT (Contributed by NM, 10-Mar-2013.)
 |-  .<_  =  (