HomeHome Metamath Proof Explorer
Theorem List (p. 308 of 309)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-21328)
  Hilbert Space Explorer  Hilbert Space Explorer
(21329-22851)
  Users' Mathboxes  Users' Mathboxes
(22852-30843)
 

Theorem List for Metamath Proof Explorer - 30701-30800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremhdmap1l6 30701 Part (6) of [Baer] p. 47 line 6. Note that we use  -.  X  e.  ( N `  { Y ,  Z }
) which is equivalent to Baer's "Fx  i^i (Fy + Fz)" by lspdisjb 15714. (Contributed by NM, 17-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  (
 Base `  C )   &    |-  .+b  =  ( +g  `  C )   &    |-  L  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  I  =  ( (HDMap1 `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  Z  e.  V )   &    |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( L `  { F } ) )   =>    |-  ( ph  ->  ( I `  <. X ,  F ,  ( Y  .+  Z ) >. )  =  ( ( I `  <. X ,  F ,  Y >. )  .+b  ( I `  <. X ,  F ,  Z >. ) ) )
 
Theoremhdmap1p6N 30702 (Convert mapdh6N 30626 to use HDMap1 function.) Part (6) of [Baer] p. 47 line 6. Note that we use  -.  X  e.  ( N `  { Y ,  Z } ) which is equivalent to Baer's "Fx  i^i (Fy + Fz)" by lspdisjb 15714. TODO: No longer used and should be deleted. Use hdmap1l6 30701 instead. Also delete unused mapdh6N 30626 etc. leading up to this. (Contributed by NM, 17-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  (
 Base `  C )   &    |-  .+b  =  ( +g  `  C )   &    |-  L  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  I  =  ( (HDMap1 `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  Z  e.  V )   &    |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( L `  { F } ) )   =>    |-  ( ph  ->  ( I `  <. X ,  F ,  ( Y  .+  Z ) >. )  =  ( ( I `  <. X ,  F ,  Y >. )  .+b  ( I `  <. X ,  F ,  Z >. ) ) )
 
Theoremhdmap1eulem 30703* Lemma for hdmap1eu 30705. TODO: combine with hdmap1eu 30705 or at least share some hypotheses. (Contributed by NM, 15-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  Q  =  ( 0g
 `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  I  =  ( (HDMap1 `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  ( M `  ( N `
  { X }
 ) )  =  ( J `  { F } ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  T  e.  V )   &    |-  L  =  ( x  e.  _V  |->  if (
 ( 2nd `  x )  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `  { ( 2nd `  x ) }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( ( 1st `  ( 1st `  x ) )  .-  ( 2nd `  x ) ) }
 ) )  =  ( J `  { (
 ( 2nd `  ( 1st `  x ) ) R h ) } )
 ) ) ) )   =>    |-  ( ph  ->  E! y  e.  D  A. z  e.  V  ( -.  z  e.  ( ( N `  { X } )  u.  ( N `  { T } ) )  ->  y  =  ( I `  <. z ,  ( I `  <. X ,  F ,  z >. ) ,  T >. ) ) )
 
Theoremhdmap1eulemOLDN 30704* Lemma for hdmap1euOLDN 30706. TODO: combine with hdmap1euOLDN 30706 or at least share some hypotheses. (Contributed by NM, 15-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  Q  =  ( 0g
 `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  I  =  ( (HDMap1 `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  ( M `  ( N `
  { X }
 ) )  =  ( J `  { F } ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  T  e.  V )   &    |-  L  =  ( x  e.  _V  |->  if (
 ( 2nd `  x )  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `  { ( 2nd `  x ) }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( ( 1st `  ( 1st `  x ) )  .-  ( 2nd `  x ) ) }
 ) )  =  ( J `  { (
 ( 2nd `  ( 1st `  x ) ) R h ) } )
 ) ) ) )   =>    |-  ( ph  ->  E! y  e.  D  A. z  e.  V  ( -.  z  e.  ( N `  { X ,  T } )  ->  y  =  ( I `  <. z ,  ( I `  <. X ,  F ,  z >. ) ,  T >. ) ) )
 
Theoremhdmap1eu 30705* Convert mapdh9a 30669 to use the HDMap1 notation. (Contributed by NM, 15-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  (
 Base `  C )   &    |-  L  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  I  =  ( (HDMap1 `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  ( M `  ( N `
  { X }
 ) )  =  ( L `  { F } ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  T  e.  V )   =>    |-  ( ph  ->  E! y  e.  D  A. z  e.  V  ( -.  z  e.  ( ( N `  { X } )  u.  ( N `  { T } ) )  ->  y  =  ( I `  <. z ,  ( I `  <. X ,  F ,  z >. ) ,  T >. ) ) )
 
Theoremhdmap1euOLDN 30706* Convert mapdh9aOLDN 30670 to use the HDMap1 notation. (Contributed by NM, 15-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  (
 Base `  C )   &    |-  L  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  I  =  ( (HDMap1 `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  ( M `  ( N `
  { X }
 ) )  =  ( L `  { F } ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  T  e.  V )   =>    |-  ( ph  ->  E! y  e.  D  A. z  e.  V  ( -.  z  e.  ( N `  { X ,  T } )  ->  y  =  ( I `  <. z ,  ( I `  <. X ,  F ,  z >. ) ,  T >. ) ) )
 
Theoremhdmap1neglem1N 30707 Lemma for hdmapneg 30728. TODO: Not used; delete. (Contributed by NM, 23-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  R  =  ( inv g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  (
 Base `  C )   &    |-  S  =  ( inv g `  C )   &    |-  L  =  (
 LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  I  =  ( (HDMap1 `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( L `  { F } ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )   =>    |-  ( ph  ->  ( I `  <. ( R `  X ) ,  ( S `  F ) ,  ( R `  Y ) >. )  =  ( S `  G ) )
 
Theoremhdmapffval 30708* Map from vectors to functionals in the closed kernel dual space. (Contributed by NM, 15-May-2015.)
 |-  H  =  ( LHyp `  K )   =>    |-  ( K  e.  X  ->  (HDMap `  K )  =  ( w  e.  H  |->  { a  |  [. <. (  _I  |`  ( Base `  K )
 ) ,  (  _I  |`  ( ( LTrn `  K ) `  w ) )
 >.  /  e ]. [. (
 ( DVecH `  K ) `  w )  /  u ].
 [. ( Base `  u )  /  v ]. [. (
 (HDMap1 `  K ) `  w )  /  i ]. a  e.  (
 t  e.  v  |->  (
 iota_ y  e.  ( Base `  ( (LCDual `  K ) `  w ) )
 A. z  e.  v  ( -.  z  e.  (
 ( ( LSpan `  u ) `  { e }
 )  u.  ( (
 LSpan `  u ) `  { t } )
 )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  K ) `  w ) `  e ) ,  z >. ) ,  t >. ) ) ) ) } ) )
 
Theoremhdmapfval 30709* Map from vectors to functionals in the closed kernel dual space. (Contributed by NM, 15-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  E  =  <. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  ( (
 LTrn `  K ) `  W ) ) >.   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  J  =  ( (HVMap `  K ) `  W )   &    |-  I  =  ( (HDMap1 `  K ) `  W )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  A  /\  W  e.  H ) )   =>    |-  ( ph  ->  S  =  ( t  e.  V  |->  ( iota_ y  e.  D A. z  e.  V  ( -.  z  e.  (
 ( N `  { E } )  u.  ( N `  { t }
 ) )  ->  y  =  ( I `  <. z ,  ( I `  <. E ,  ( J `  E ) ,  z >. ) ,  t >. ) ) ) ) )
 
Theoremhdmapval 30710* Value of map from vectors to functionals in the closed kernel dual space. This is the function sigma on line 27 above part 9 in [Baer] p. 48. We select a convenient fixed reference vector  E to be  <. 0 ,  1 >. (corresponding to vector u on p. 48 line 7) whose span is the lattice isomorphism map of the fiducial atom  P  =  ( ( oc `  K
) `  W ) (see dvheveccl 29991). 
( J `  E
) is a fixed reference functional determined by this vector (corresponding to u' on line 8; mapdhvmap 30648 shows in Baer's notation (Fu)* = Gu'). Baer's independent vectors v and w on line 7 correspond to our  z that the  A. z  e.  V ranges over. The middle term  ( I `  <. E ,  ( J `
 E ) ,  z >. ) provides isolation to allow  E and  T to assume the same value without conflict. Closure is shown by hdmapcl 30712. If a separate auxiliary vector is known, hdmapval2 30714 provides a version without quantification. (Contributed by NM, 15-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  E  =  <. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  ( (
 LTrn `  K ) `  W ) ) >.   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  J  =  ( (HVMap `  K ) `  W )   &    |-  I  =  ( (HDMap1 `  K ) `  W )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  A  /\  W  e.  H ) )   &    |-  ( ph  ->  T  e.  V )   =>    |-  ( ph  ->  ( S `  T )  =  ( iota_ y  e.  D A. z  e.  V  ( -.  z  e.  ( ( N `  { E } )  u.  ( N `  { T } ) )  ->  y  =  ( I `  <. z ,  ( I `  <. E ,  ( J `  E ) ,  z >. ) ,  T >. ) ) ) )
 
TheoremhdmapfnN 30711 Functionality of map from vectors to functionals with closed kernels. (Contributed by NM, 30-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  S  Fn  V )
 
Theoremhdmapcl 30712 Closure of map from vectors to functionals with closed kernels. (Contributed by NM, 15-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  T  e.  V )   =>    |-  ( ph  ->  ( S `  T )  e.  D )
 
Theoremhdmapval2lem 30713* Lemma for hdmapval2 30714. (Contributed by NM, 15-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  E  =  <. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  ( (
 LTrn `  K ) `  W ) ) >.   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  J  =  ( (HVMap `  K ) `  W )   &    |-  I  =  ( (HDMap1 `  K ) `  W )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  T  e.  V )   &    |-  ( ph  ->  F  e.  D )   =>    |-  ( ph  ->  (
 ( S `  T )  =  F  <->  A. z  e.  V  ( -.  z  e.  (
 ( N `  { E } )  u.  ( N `  { T }
 ) )  ->  F  =  ( I `  <. z ,  ( I `  <. E ,  ( J `  E ) ,  z >. ) ,  T >. ) ) ) )
 
Theoremhdmapval2 30714 Value of map from vectors to functionals with a specific auxiliary vector. TODO: Would shorter proofs result if the .ne hypothesis were changed to two  =/= hypothesis? Consider hdmaplem1 30650 through hdmaplem4 30653, which would become obsolete. (Contributed by NM, 15-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  E  =  <. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  ( (
 LTrn `  K ) `  W ) ) >.   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  J  =  ( (HVMap `  K ) `  W )   &    |-  I  =  ( (HDMap1 `  K ) `  W )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  T  e.  V )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  -.  X  e.  ( ( N `  { E } )  u.  ( N `  { T } ) ) )   =>    |-  ( ph  ->  ( S `  T )  =  ( I `  <. X ,  ( I `  <. E ,  ( J `  E ) ,  X >. ) ,  T >. ) )
 
Theoremhdmapval0 30715 Value of map from vectors to functionals at zero. Note: we use dvh3dim 30325 for convenience, even though 3 dimensions aren't necessary at this point. TODO: I think either this or hdmapeq0 30726 could be derived from the other to shorten proof. (Contributed by NM, 17-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .0.  =  ( 0g `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  Q  =  ( 0g
 `  C )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  ( S `  .0.  )  =  Q )
 
Theoremhdmapeveclem 30716 Lemma for hdmapevec 30717. TODO: combine with hdmapevec 30717 if it shortens overall. (Contributed by NM, 16-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  E  =  <. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  ( (
 LTrn `  K ) `  W ) ) >.   &    |-  J  =  ( (HVMap `  K ) `  W )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  (
 Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  I  =  ( (HDMap1 `  K ) `  W )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  -.  X  e.  ( ( N `  { E } )  u.  ( N `  { E } ) ) )   =>    |-  ( ph  ->  ( S `  E )  =  ( J `  E ) )
 
Theoremhdmapevec 30717 Value of map from vectors to functionals at the reference vector  E. (Contributed by NM, 16-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  E  =  <. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  ( (
 LTrn `  K ) `  W ) ) >.   &    |-  J  =  ( (HVMap `  K ) `  W )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  ( S `  E )  =  ( J `  E ) )
 
Theoremhdmapevec2 30718 The inner product of the reference vector  E with itself is nonzero. This shows the inner product condition in the proof of Theorem 3.6 of [Holland95] p. 14 line 32,  [ e , e  ]  =/=  0 is satisfied. TODO: remove redundant hypothesis hdmapevec.j. (Contributed by NM, 1-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  E  =  <. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  ( (
 LTrn `  K ) `  W ) ) >.   &    |-  J  =  ( (HVMap `  K ) `  W )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  R  =  (Scalar `  U )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( ph  ->  ( ( S `  E ) `  E )  =  .1.  )
 
Theoremhdmapval3lemN 30719 Value of map from vectors to functionals at arguments not colinear with the reference vector 
E. (Contributed by NM, 17-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  E  =  <. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  ( (
 LTrn `  K ) `  W ) ) >.   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  J  =  ( (HVMap `  K ) `  W )   &    |-  I  =  ( (HDMap1 `  K ) `  W )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  ( N `  { T } )  =/=  ( N `  { E }
 ) )   &    |-  ( ph  ->  T  e.  ( V  \  { ( 0g `  U ) } )
 )   &    |-  ( ph  ->  x  e.  V )   &    |-  ( ph  ->  -.  x  e.  ( N `
  { E ,  T } ) )   =>    |-  ( ph  ->  ( S `  T )  =  ( I `  <. E ,  ( J `
  E ) ,  T >. ) )
 
Theoremhdmapval3N 30720 Value of map from vectors to functionals at arguments not colinear with the reference vector  E. (Contributed by NM, 17-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  E  =  <. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  ( (
 LTrn `  K ) `  W ) ) >.   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  J  =  ( (HVMap `  K ) `  W )   &    |-  I  =  ( (HDMap1 `  K ) `  W )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  ( N `  { T } )  =/=  ( N `  { E }
 ) )   &    |-  ( ph  ->  T  e.  V )   =>    |-  ( ph  ->  ( S `  T )  =  ( I `  <. E ,  ( J `
  E ) ,  T >. ) )
 
Theoremhdmap10lem 30721 Lemma for hdmap10 30722. (Contributed by NM, 17-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  L  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  E  =  <. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  ( (
 LTrn `  K ) `  W ) ) >.   &    |-  .0.  =  ( 0g `  U )   &    |-  D  =  ( Base `  C )   &    |-  J  =  ( (HVMap `  K ) `  W )   &    |-  I  =  ( (HDMap1 `  K ) `  W )   &    |-  ( ph  ->  T  e.  ( V  \  {  .0.  } ) )   =>    |-  ( ph  ->  ( M `  ( N `  { T } ) )  =  ( L `  { ( S `  T ) }
 ) )
 
Theoremhdmap10 30722 Part 10 in [Baer] p. 48 line 33, (Ft)* = G(tS) in their notation (S = sigma). (Contributed by NM, 17-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  L  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  T  e.  V )   =>    |-  ( ph  ->  ( M `  ( N `
  { T }
 ) )  =  ( L `  { ( S `  T ) }
 ) )
 
Theoremhdmap11lem1 30723 Lemma for hdmapadd 30725. (Contributed by NM, 26-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .+b  =  ( +g  `  C )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  E  =  <. (  _I  |`  ( Base `  K )
 ) ,  (  _I  |`  ( ( LTrn `  K ) `  W ) )
 >.   &    |- 
 .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  D  =  ( Base `  C )   &    |-  L  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  J  =  ( (HVMap `  K ) `  W )   &    |-  I  =  ( (HDMap1 `  K ) `  W )   &    |-  ( ph  ->  z  e.  V )   &    |-  ( ph  ->  -.  z  e.  ( N `  { X ,  Y } ) )   &    |-  ( ph  ->  ( N ` 
 { z } )  =/=  ( N `  { E } ) )   =>    |-  ( ph  ->  ( S `  ( X 
 .+  Y ) )  =  ( ( S `
  X )  .+b  ( S `  Y ) ) )
 
Theoremhdmap11lem2 30724 Lemma for hdmapadd 30725. (Contributed by NM, 26-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .+b  =  ( +g  `  C )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  E  =  <. (  _I  |`  ( Base `  K )
 ) ,  (  _I  |`  ( ( LTrn `  K ) `  W ) )
 >.   &    |- 
 .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  D  =  ( Base `  C )   &    |-  L  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  J  =  ( (HVMap `  K ) `  W )   &    |-  I  =  ( (HDMap1 `  K ) `  W )   =>    |-  ( ph  ->  ( S `  ( X 
 .+  Y ) )  =  ( ( S `
  X )  .+b  ( S `  Y ) ) )
 
Theoremhdmapadd 30725 Part 11 in [Baer] p. 48 line 35, (a+b)S = aS+bS in their notation (S = sigma). (Contributed by NM, 22-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .+b  =  ( +g  `  C )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   =>    |-  ( ph  ->  ( S `  ( X  .+  Y ) )  =  ( ( S `  X )  .+b  ( S `
  Y ) ) )
 
Theoremhdmapeq0 30726 Part of proof of part 12 in [Baer] p. 49 line 3. (Contributed by NM, 22-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  Q  =  ( 0g
 `  C )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  T  e.  V )   =>    |-  ( ph  ->  ( ( S `  T )  =  Q  <->  T  =  .0.  ) )
 
Theoremhdmapnzcl 30727 Nonzero vector closure of map from vectors to functionals with closed kernels. (Contributed by NM, 27-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  Q  =  ( 0g
 `  C )   &    |-  D  =  ( Base `  C )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  T  e.  ( V  \  {  .0.  } ) )   =>    |-  ( ph  ->  ( S `  T )  e.  ( D  \  { Q }
 ) )
 
Theoremhdmapneg 30728 Part of proof of part 12 in [Baer] p. 49 line 4. The sigma map of a negative is the negative of the sigma map. (Contributed by NM, 24-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  M  =  ( inv g `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  I  =  ( inv g `  C )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  T  e.  V )   =>    |-  ( ph  ->  ( S `  ( M `  T ) )  =  ( I `  ( S `  T ) ) )
 
Theoremhdmapsub 30729 Part of proof of part 12 in [Baer] p. 49 line 5, (a-b)S = aS-bS in their notation (S = sigma). (Contributed by NM, 26-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  N  =  ( -g `  C )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   =>    |-  ( ph  ->  ( S `  ( X 
 .-  Y ) )  =  ( ( S `
  X ) N ( S `  Y ) ) )
 
Theoremhdmap11 30730 Part of proof of part 12 in [Baer] p. 49 line 4, aS=bS iff a=b in their notation (S = sigma). The sigma map is one-to-one. (Contributed by NM, 26-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   =>    |-  ( ph  ->  (
 ( S `  X )  =  ( S `  Y )  <->  X  =  Y ) )
 
Theoremhdmaprnlem1N 30731 Part of proof of part 12 in [Baer] p. 49 line 10, Gu'  =/= Gs. Our  ( N `  { v } ) is Baer's T. (Contributed by NM, 26-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  L  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  s  e.  ( D  \  { Q } ) )   &    |-  ( ph  ->  v  e.  V )   &    |-  ( ph  ->  ( M `  ( N `
  { v }
 ) )  =  ( L `  { s } ) )   &    |-  ( ph  ->  u  e.  V )   &    |-  ( ph  ->  -.  u  e.  ( N `  { v } ) )   =>    |-  ( ph  ->  ( L `  { ( S `  u ) }
 )  =/=  ( L ` 
 { s } )
 )
 
Theoremhdmaprnlem3N 30732 Part of proof of part 12 in [Baer] p. 49 line 15, T  =/= P. Our  ( `' M `  ( L `  {
( ( S `  u )  .+b  s
) } ) ) is Baer's P, where P* = G(u'+s). (Contributed by NM, 27-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  L  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  s  e.  ( D  \  { Q } ) )   &    |-  ( ph  ->  v  e.  V )   &    |-  ( ph  ->  ( M `  ( N `
  { v }
 ) )  =  ( L `  { s } ) )   &    |-  ( ph  ->  u  e.  V )   &    |-  ( ph  ->  -.  u  e.  ( N `  { v } ) )   &    |-  D  =  ( Base `  C )   &    |-  Q  =  ( 0g `  C )   &    |- 
 .0.  =  ( 0g `  U )   &    |-  .+b  =  ( +g  `  C )   =>    |-  ( ph  ->  ( N `  { v } )  =/=  ( `' M `  ( L `
  { ( ( S `  u ) 
 .+b  s ) }
 ) ) )
 
Theoremhdmaprnlem3uN 30733 Part of proof of part 12 in [Baer] p. 49. (Contributed by NM, 29-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  L  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  s  e.  ( D  \  { Q } ) )   &    |-  ( ph  ->  v  e.  V )   &    |-  ( ph  ->  ( M `  ( N `
  { v }
 ) )  =  ( L `  { s } ) )   &    |-  ( ph  ->  u  e.  V )   &    |-  ( ph  ->  -.  u  e.  ( N `  { v } ) )   &    |-  D  =  ( Base `  C )   &    |-  Q  =  ( 0g `  C )   &    |- 
 .0.  =  ( 0g `  U )   &    |-  .+b  =  ( +g  `  C )   =>    |-  ( ph  ->  ( N `  { u } )  =/=  ( `' M `  ( L `
  { ( ( S `  u ) 
 .+b  s ) }
 ) ) )
 
Theoremhdmaprnlem4tN 30734 Lemma for hdmaprnN 30746. TODO: This lemma doesn't quite pay for itself even though used 4 times. Maybe prove this directly instead. (Contributed by NM, 27-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  L  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  s  e.  ( D  \  { Q } ) )   &    |-  ( ph  ->  v  e.  V )   &    |-  ( ph  ->  ( M `  ( N `
  { v }
 ) )  =  ( L `  { s } ) )   &    |-  ( ph  ->  u  e.  V )   &    |-  ( ph  ->  -.  u  e.  ( N `  { v } ) )   &    |-  D  =  ( Base `  C )   &    |-  Q  =  ( 0g `  C )   &    |- 
 .0.  =  ( 0g `  U )   &    |-  .+b  =  ( +g  `  C )   &    |-  ( ph  ->  t  e.  (
 ( N `  { v } )  \  {  .0.  } ) )   =>    |-  ( ph  ->  t  e.  V )
 
Theoremhdmaprnlem4N 30735 Part of proof of part 12 in [Baer] p. 49 line 19. (T* =) (Ft)* = Gs. (Contributed by NM, 27-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  L  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  s  e.  ( D  \  { Q } ) )   &    |-  ( ph  ->  v  e.  V )   &    |-  ( ph  ->  ( M `  ( N `
  { v }
 ) )  =  ( L `  { s } ) )   &    |-  ( ph  ->  u  e.  V )   &    |-  ( ph  ->  -.  u  e.  ( N `  { v } ) )   &    |-  D  =  ( Base `  C )   &    |-  Q  =  ( 0g `  C )   &    |- 
 .0.  =  ( 0g `  U )   &    |-  .+b  =  ( +g  `  C )   &    |-  ( ph  ->  t  e.  (
 ( N `  { v } )  \  {  .0.  } ) )   =>    |-  ( ph  ->  ( M `  ( N `  { t } )
 )  =  ( L `
  { s }
 ) )
 
Theoremhdmaprnlem6N 30736 Part of proof of part 12 in [Baer] p. 49 line 18, G(u'+s) = G(u'+t). (Contributed by NM, 27-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  L  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  s  e.  ( D  \  { Q } ) )   &    |-  ( ph  ->  v  e.  V )   &    |-  ( ph  ->  ( M `  ( N `
  { v }
 ) )  =  ( L `  { s } ) )   &    |-  ( ph  ->  u  e.  V )   &    |-  ( ph  ->  -.  u  e.  ( N `  { v } ) )   &    |-  D  =  ( Base `  C )   &    |-  Q  =  ( 0g `  C )   &    |- 
 .0.  =  ( 0g `  U )   &    |-  .+b  =  ( +g  `  C )   &    |-  ( ph  ->  t  e.  (
 ( N `  { v } )  \  {  .0.  } ) )   &    |-  .+  =  ( +g  `  U )   &    |-  ( ph  ->  ( L `  { ( ( S `
  u )  .+b  s ) } )  =  ( M `  ( N `  { ( u 
 .+  t ) }
 ) ) )   =>    |-  ( ph  ->  ( L `  { (
 ( S `  u )  .+b  s ) }
 )  =  ( L `
  { ( ( S `  u ) 
 .+b  ( S `  t ) ) }
 ) )
 
Theoremhdmaprnlem7N 30737 Part of proof of part 12 in [Baer] p. 49 line 19, s-St  e. G(u'+s) = P*. (Contributed by NM, 27-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  L  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  s  e.  ( D  \  { Q } ) )   &    |-  ( ph  ->  v  e.  V )   &    |-  ( ph  ->  ( M `  ( N `
  { v }
 ) )  =  ( L `  { s } ) )   &    |-  ( ph  ->  u  e.  V )   &    |-  ( ph  ->  -.  u  e.  ( N `  { v } ) )   &    |-  D  =  ( Base `  C )   &    |-  Q  =  ( 0g `  C )   &    |- 
 .0.  =  ( 0g `  U )   &    |-  .+b  =  ( +g  `  C )   &    |-  ( ph  ->  t  e.  (
 ( N `  { v } )  \  {  .0.  } ) )   &    |-  .+  =  ( +g  `  U )   &    |-  ( ph  ->  ( L `  { ( ( S `
  u )  .+b  s ) } )  =  ( M `  ( N `  { ( u 
 .+  t ) }
 ) ) )   =>    |-  ( ph  ->  ( s ( -g `  C ) ( S `  t ) )  e.  ( L `  { (
 ( S `  u )  .+b  s ) }
 ) )
 
Theoremhdmaprnlem8N 30738 Part of proof of part 12 in [Baer] p. 49 line 19, s-St  e. (Ft)* = T*. (Contributed by NM, 27-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  L  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  s  e.  ( D  \  { Q } ) )   &    |-  ( ph  ->  v  e.  V )   &    |-  ( ph  ->  ( M `  ( N `
  { v }
 ) )  =  ( L `  { s } ) )   &    |-  ( ph  ->  u  e.  V )   &    |-  ( ph  ->  -.  u  e.  ( N `  { v } ) )   &    |-  D  =  ( Base `  C )   &    |-  Q  =  ( 0g `  C )   &    |- 
 .0.  =  ( 0g `  U )   &    |-  .+b  =  ( +g  `  C )   &    |-  ( ph  ->  t  e.  (
 ( N `  { v } )  \  {  .0.  } ) )   &    |-  .+  =  ( +g  `  U )   &    |-  ( ph  ->  ( L `  { ( ( S `
  u )  .+b  s ) } )  =  ( M `  ( N `  { ( u 
 .+  t ) }
 ) ) )   =>    |-  ( ph  ->  ( s ( -g `  C ) ( S `  t ) )  e.  ( M `  ( N `  { t }
 ) ) )
 
Theoremhdmaprnlem9N 30739 Part of proof of part 12 in [Baer] p. 49 line 21, s=S(t). TODO: we seem to be going back and forth with mapd11 30518 and mapdcnv11N 30538. Use better hypotheses and/or theorems? (Contributed by NM, 27-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  L  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  s  e.  ( D  \  { Q } ) )   &    |-  ( ph  ->  v  e.  V )   &    |-  ( ph  ->  ( M `  ( N `
  { v }
 ) )  =  ( L `  { s } ) )   &    |-  ( ph  ->  u  e.  V )   &    |-  ( ph  ->  -.  u  e.  ( N `  { v } ) )   &    |-  D  =  ( Base `  C )   &    |-  Q  =  ( 0g `  C )   &    |- 
 .0.  =  ( 0g `  U )   &    |-  .+b  =  ( +g  `  C )   &    |-  ( ph  ->  t  e.  (
 ( N `  { v } )  \  {  .0.  } ) )   &    |-  .+  =  ( +g  `  U )   &    |-  ( ph  ->  ( L `  { ( ( S `
  u )  .+b  s ) } )  =  ( M `  ( N `  { ( u 
 .+  t ) }
 ) ) )   =>    |-  ( ph  ->  s  =  ( S `  t ) )
 
Theoremhdmaprnlem3eN 30740* Lemma for hdmaprnN 30746. (Contributed by NM, 29-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  L  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  s  e.  ( D  \  { Q } ) )   &    |-  ( ph  ->  v  e.  V )   &    |-  ( ph  ->  ( M `  ( N `
  { v }
 ) )  =  ( L `  { s } ) )   &    |-  ( ph  ->  u  e.  V )   &    |-  ( ph  ->  -.  u  e.  ( N `  { v } ) )   &    |-  D  =  ( Base `  C )   &    |-  Q  =  ( 0g `  C )   &    |- 
 .0.  =  ( 0g `  U )   &    |-  .+b  =  ( +g  `  C )   &    |-  .+  =  ( +g  `  U )   =>    |-  ( ph  ->  E. t  e.  (
 ( N `  { v } )  \  {  .0.  } ) ( L `  { ( ( S `
  u )  .+b  s ) } )  =  ( M `  ( N `  { ( u 
 .+  t ) }
 ) ) )
 
Theoremhdmaprnlem10N 30741* Lemma for hdmaprnN 30746. Show  s is in the range of  S. (Contributed by NM, 29-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  L  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  s  e.  ( D  \  { Q } ) )   &    |-  ( ph  ->  v  e.  V )   &    |-  ( ph  ->  ( M `  ( N `
  { v }
 ) )  =  ( L `  { s } ) )   &    |-  ( ph  ->  u  e.  V )   &    |-  ( ph  ->  -.  u  e.  ( N `  { v } ) )   &    |-  D  =  ( Base `  C )   &    |-  Q  =  ( 0g `  C )   &    |- 
 .0.  =  ( 0g `  U )   &    |-  .+b  =  ( +g  `  C )   &    |-  .+  =  ( +g  `  U )   =>    |-  ( ph  ->  E. t  e.  V  ( S `  t )  =  s )
 
Theoremhdmaprnlem11N 30742* Lemma for hdmaprnN 30746. Show  s is in the range of  S. (Contributed by NM, 29-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  L  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  s  e.  ( D  \  { Q } ) )   &    |-  ( ph  ->  v  e.  V )   &    |-  ( ph  ->  ( M `  ( N `
  { v }
 ) )  =  ( L `  { s } ) )   &    |-  ( ph  ->  u  e.  V )   &    |-  ( ph  ->  -.  u  e.  ( N `  { v } ) )   &    |-  D  =  ( Base `  C )   &    |-  Q  =  ( 0g `  C )   &    |- 
 .0.  =  ( 0g `  U )   &    |-  .+b  =  ( +g  `  C )   &    |-  .+  =  ( +g  `  U )   =>    |-  ( ph  ->  s  e.  ran  S )
 
Theoremhdmaprnlem15N 30743* Lemma for hdmaprnN 30746. Eliminate  u. (Contributed by NM, 30-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  .0.  =  ( 0g `  C )   &    |-  L  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  s  e.  ( D  \  {  .0.  } ) )   &    |-  ( ph  ->  v  e.  V )   &    |-  ( ph  ->  ( M `  ( N `  { v } )
 )  =  ( L `
  { s }
 ) )   =>    |-  ( ph  ->  s  e.  ran  S )
 
Theoremhdmaprnlem16N 30744 Lemma for hdmaprnN 30746. Eliminate  v. (Contributed by NM, 30-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  .0.  =  ( 0g `  C )   &    |-  L  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  s  e.  ( D  \  {  .0.  } ) )   =>    |-  ( ph  ->  s  e.  ran  S )
 
Theoremhdmaprnlem17N 30745 Lemma for hdmaprnN 30746. Include zero. (Contributed by NM, 30-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  .0.  =  ( 0g `  C )   &    |-  L  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  s  e.  D )   =>    |-  ( ph  ->  s  e.  ran  S )
 
TheoremhdmaprnN 30746 Part of proof of part 12 in [Baer] p. 49 line 21, As=B. (Contributed by NM, 30-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  ran  S  =  D )
 
Theoremhdmapf1oN 30747 Part 12 in [Baer] p. 49. The map from vectors to functionals with closed kernels maps one-to-one onto. Combined with hdmapadd 30725, this shows the map is an automorphism from the additive group of vectors to the additive group of functionals with closed kernels. (Contributed by NM, 30-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  S : V -1-1-onto-> D )
 
Theoremhdmap14lem1a 30748 Prior to part 14 in [Baer] p. 49, line 25. (Contributed by NM, 31-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .xb  =  ( .s `  C )   &    |-  L  =  ( LSpan `  C )   &    |-  P  =  (Scalar `  C )   &    |-  A  =  ( Base `  P )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  F  e.  B )   &    |- 
 .0.  =  ( 0g `  R )   &    |-  ( ph  ->  F  =/=  .0.  )   =>    |-  ( ph  ->  ( L `  { ( S `  X ) }
 )  =  ( L `
  { ( S `
  ( F  .x.  X ) ) } )
 )
 
Theoremhdmap14lem2a 30749* Prior to part 14 in [Baer] p. 49, line 25. TODO: fix to include  F  =  .0. so it can be used in hdmap14lem10 30759. (Contributed by NM, 31-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .xb  =  ( .s `  C )   &    |-  L  =  ( LSpan `  C )   &    |-  P  =  (Scalar `  C )   &    |-  A  =  ( Base `  P )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  F  e.  B )   =>    |-  ( ph  ->  E. g  e.  A  ( S `  ( F  .x.  X ) )  =  ( g 
 .xb  ( S `  X ) ) )
 
Theoremhdmap14lem1 30750 Prior to part 14 in [Baer] p. 49, line 25. (Contributed by NM, 31-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  (
 Base `  R )   &    |-  Z  =  ( 0g `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .xb  =  ( .s `  C )   &    |-  L  =  (
 LSpan `  C )   &    |-  P  =  (Scalar `  C )   &    |-  A  =  ( Base `  P )   &    |-  Q  =  ( 0g `  P )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  F  e.  ( B  \  { Z } ) )   =>    |-  ( ph  ->  ( L ` 
 { ( S `  X ) } )  =  ( L `  { ( S `  ( F  .x.  X ) ) } )
 )
 
Theoremhdmap14lem2N 30751* Prior to part 14 in [Baer] p. 49, line 25. TODO: fix to include  F  =  Z so it can be used in hdmap14lem10 30759. (Contributed by NM, 31-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  (
 Base `  R )   &    |-  Z  =  ( 0g `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .xb  =  ( .s `  C )   &    |-  L  =  (
 LSpan `  C )   &    |-  P  =  (Scalar `  C )   &    |-  A  =  ( Base `  P )   &    |-  Q  =  ( 0g `  P )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  F  e.  ( B  \  { Z } ) )   =>    |-  ( ph  ->  E. g  e.  ( A  \  { Q } ) ( S `
  ( F  .x.  X ) )  =  ( g  .xb  ( S `  X ) ) )
 
Theoremhdmap14lem3 30752* Prior to part 14 in [Baer] p. 49, line 26. (Contributed by NM, 31-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  (
 Base `  R )   &    |-  Z  =  ( 0g `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .xb  =  ( .s `  C )   &    |-  L  =  (
 LSpan `  C )   &    |-  P  =  (Scalar `  C )   &    |-  A  =  ( Base `  P )   &    |-  Q  =  ( 0g `  P )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  F  e.  ( B  \  { Z } ) )   =>    |-  ( ph  ->  E! g  e.  ( A  \  { Q } ) ( S `
  ( F  .x.  X ) )  =  ( g  .xb  ( S `  X ) ) )
 
Theoremhdmap14lem4a 30753* Simplify  ( A  \  { Q } ) in hdmap14lem3 30752 to provide a slightly simpler definition later. (Contributed by NM, 31-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  (
 Base `  R )   &    |-  Z  =  ( 0g `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .xb  =  ( .s `  C )   &    |-  L  =  (
 LSpan `  C )   &    |-  P  =  (Scalar `  C )   &    |-  A  =  ( Base `  P )   &    |-  Q  =  ( 0g `  P )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  F  e.  ( B  \  { Z } ) )   =>    |-  ( ph  ->  ( E! g  e.  ( A  \  { Q } )
 ( S `  ( F  .x.  X ) )  =  ( g  .xb  ( S `  X ) )  <->  E! g  e.  A  ( S `  ( F 
 .x.  X ) )  =  ( g  .xb  ( S `  X ) ) ) )
 
Theoremhdmap14lem4 30754* Simplify  ( A  \  { Q } ) in hdmap14lem3 30752 to provide a slightly simpler definition later. TODO: Use hdmap14lem4a 30753 if that one is also used directly elsewhere. Otherwise, merge hdmap14lem4a 30753 into this one. (Contributed by NM, 31-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  (
 Base `  R )   &    |-  Z  =  ( 0g `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .xb  =  ( .s `  C )   &    |-  L  =  (
 LSpan `  C )   &    |-  P  =  (Scalar `  C )   &    |-  A  =  ( Base `  P )   &    |-  Q  =  ( 0g `  P )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  F  e.  ( B  \  { Z } ) )   =>    |-  ( ph  ->  E! g  e.  A  ( S `  ( F  .x.  X ) )  =  ( g 
 .xb  ( S `  X ) ) )
 
Theoremhdmap14lem6 30755* Case where  F is zero. (Contributed by NM, 1-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  (
 Base `  R )   &    |-  Z  =  ( 0g `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .xb  =  ( .s `  C )   &    |-  L  =  (
 LSpan `  C )   &    |-  P  =  (Scalar `  C )   &    |-  A  =  ( Base `  P )   &    |-  Q  =  ( 0g `  P )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  F  =  Z )   =>    |-  ( ph  ->  E! g  e.  A  ( S `  ( F 
 .x.  X ) )  =  ( g  .xb  ( S `  X ) ) )
 
Theoremhdmap14lem7 30756* Combine cases of  F. TODO: Can this be done at once in hdmap14lem3 30752, in order to get rid of hdmap14lem6 30755? Perhaps modify lspsneu 15711 to become  E! k  e.  K instead of  E! k  e.  ( K  \  {  .0.  } )? (Contributed by NM, 1-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  (
 Base `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .xb  =  ( .s `  C )   &    |-  P  =  (Scalar `  C )   &    |-  A  =  ( Base `  P )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  F  e.  B )   =>    |-  ( ph  ->  E! g  e.  A  ( S `  ( F  .x.  X ) )  =  ( g  .xb  ( S `  X ) ) )
 
Theoremhdmap14lem8 30757 Part of proof of part 14 in [Baer] p. 49 lines 33-35. (Contributed by NM, 1-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .+b  =  ( +g  `  C )   &    |-  .xb  =  ( .s `  C )   &    |-  P  =  (Scalar `  C )   &    |-  A  =  ( Base `  P )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  F  e.  B )   &    |-  ( ph  ->  G  e.  A )   &    |-  ( ph  ->  I  e.  A )   &    |-  ( ph  ->  ( S `  ( F 
 .x.  X ) )  =  ( G  .xb  ( S `  X ) ) )   &    |-  ( ph  ->  ( S `  ( F 
 .x.  Y ) )  =  ( I  .xb  ( S `  Y ) ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  ( ph  ->  J  e.  A )   &    |-  ( ph  ->  ( S `  ( F  .x.  ( X 
 .+  Y ) ) )  =  ( J 
 .xb  ( S `  ( X  .+  Y ) ) ) )   =>    |-  ( ph  ->  ( ( J  .xb  ( S `  X ) ) 
 .+b  ( J  .xb  ( S `  Y ) ) )  =  ( ( G  .xb  ( S `  X ) ) 
 .+b  ( I  .xb  ( S `  Y ) ) ) )
 
Theoremhdmap14lem9 30758 Part of proof of part 14 in [Baer] p. 49 line 38. (Contributed by NM, 1-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .+b  =  ( +g  `  C )   &    |-  .xb  =  ( .s `  C )   &    |-  P  =  (Scalar `  C )   &    |-  A  =  ( Base `  P )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  F  e.  B )   &    |-  ( ph  ->  G  e.  A )   &    |-  ( ph  ->  I  e.  A )   &    |-  ( ph  ->  ( S `  ( F 
 .x.  X ) )  =  ( G  .xb  ( S `  X ) ) )   &    |-  ( ph  ->  ( S `  ( F 
 .x.  Y ) )  =  ( I  .xb  ( S `  Y ) ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  ( ph  ->  J  e.  A )   &    |-  ( ph  ->  ( S `  ( F  .x.  ( X 
 .+  Y ) ) )  =  ( J 
 .xb  ( S `  ( X  .+  Y ) ) ) )   =>    |-  ( ph  ->  G  =  I )
 
Theoremhdmap14lem10 30759 Part of proof of part 14 in [Baer] p. 49 line 38. (Contributed by NM, 3-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .+b  =  ( +g  `  C )   &    |-  .xb  =  ( .s `  C )   &    |-  P  =  (Scalar `  C )   &    |-  A  =  ( Base `  P )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  F  e.  B )   &    |-  ( ph  ->  G  e.  A )   &    |-  ( ph  ->  I  e.  A )   &    |-  ( ph  ->  ( S `  ( F 
 .x.  X ) )  =  ( G  .xb  ( S `  X ) ) )   &    |-  ( ph  ->  ( S `  ( F 
 .x.  Y ) )  =  ( I  .xb  ( S `  Y ) ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   =>    |-  ( ph  ->  G  =  I )
 
Theoremhdmap14lem11 30760 Part of proof of part 14 in [Baer] p. 50 line 3. (Contributed by NM, 3-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .+b  =  ( +g  `  C )   &    |-  .xb  =  ( .s `  C )   &    |-  P  =  (Scalar `  C )   &    |-  A  =  ( Base `  P )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  F  e.  B )   &    |-  ( ph  ->  G  e.  A )   &    |-  ( ph  ->  I  e.  A )   &    |-  ( ph  ->  ( S `  ( F 
 .x.  X ) )  =  ( G  .xb  ( S `  X ) ) )   &    |-  ( ph  ->  ( S `  ( F 
 .x.  Y ) )  =  ( I  .xb  ( S `  Y ) ) )   =>    |-  ( ph  ->  G  =  I )
 
Theoremhdmap14lem12 30761* Lemma for proof of part 14 in [Baer] p. 50. (Contributed by NM, 6-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .xb  =  ( .s `  C )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  B )   &    |-  P  =  (Scalar `  C )   &    |-  A  =  ( Base `  P )   &    |-  .0.  =  ( 0g `  U )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  G  e.  A )   =>    |-  ( ph  ->  (
 ( S `  ( F  .x.  X ) )  =  ( G  .xb  ( S `  X ) )  <->  A. y  e.  ( V  \  {  .0.  }
 ) ( S `  ( F  .x.  y ) )  =  ( G 
 .xb  ( S `  y ) ) ) )
 
Theoremhdmap14lem13 30762* Lemma for proof of part 14 in [Baer] p. 50. (Contributed by NM, 6-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .xb  =  ( .s `  C )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  B )   &    |-  P  =  (Scalar `  C )   &    |-  A  =  ( Base `  P )   &    |-  .0.  =  ( 0g `  U )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  G  e.  A )   =>    |-  ( ph  ->  (
 ( S `  ( F  .x.  X ) )  =  ( G  .xb  ( S `  X ) )  <->  A. y  e.  V  ( S `  ( F 
 .x.  y ) )  =  ( G  .xb  ( S `  y ) ) ) )
 
Theoremhdmap14lem14 30763* Part of proof of part 14 in [Baer] p. 50 line 3. (Contributed by NM, 6-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .xb  =  ( .s `  C )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  B )   &    |-  P  =  (Scalar `  C )   &    |-  A  =  ( Base `  P )   =>    |-  ( ph  ->  E! g  e.  A  A. x  e.  V  ( S `  ( F  .x.  x ) )  =  ( g 
 .xb  ( S `  x ) ) )
 
Theoremhdmap14lem15 30764* Part of proof of part 14 in [Baer] p. 50 line 3. Convert scalar base of dual to scalar base of vector space. (Contributed by NM, 6-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .xb  =  ( .s `  C )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  B )   =>    |-  ( ph  ->  E! g  e.  B  A. x  e.  V  ( S `  ( F  .x.  x ) )  =  ( g  .xb  ( S `  x ) ) )
 
Syntaxchg 30765 Extend class notation with g-map.
 class HGMap
 
Definitiondf-hgmap 30766* Define map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. (Contributed by NM, 25-Mar-2015.)
 |- HGMap  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k )  |->  { a  |  [. ( ( DVecH `  k ) `  w )  /  u ]. [. ( Base `  (Scalar `  u ) )  /  b ]. [. ( (HDMap `  k ) `  w )  /  m ]. a  e.  ( x  e.  b  |->  ( iota_ y  e.  b A. v  e.  ( Base `  u ) ( m `  ( x ( .s `  u ) v ) )  =  ( y ( .s `  ( (LCDual `  k ) `  w ) ) ( m `
  v ) ) ) ) } )
 )
 
Theoremhgmapffval 30767* Map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. (Contributed by NM, 25-Mar-2015.)
 |-  H  =  ( LHyp `  K )   =>    |-  ( K  e.  X  ->  (HGMap `  K )  =  ( w  e.  H  |->  { a  |  [. (
 ( DVecH `  K ) `  w )  /  u ].
 [. ( Base `  (Scalar `  u ) )  /  b ]. [. ( (HDMap `  K ) `  w )  /  m ]. a  e.  ( x  e.  b  |->  ( iota_ y  e.  b A. v  e.  ( Base `  u ) ( m `  ( x ( .s `  u ) v ) )  =  ( y ( .s `  ( (LCDual `  K ) `  w ) ) ( m `
  v ) ) ) ) } )
 )
 
Theoremhgmapfval 30768* Map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. (Contributed by NM, 25-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .xb  =  ( .s `  C )   &    |-  M  =  ( (HDMap `  K ) `  W )   &    |-  I  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  Y  /\  W  e.  H ) )   =>    |-  ( ph  ->  I  =  ( x  e.  B  |->  ( iota_ y  e.  B A. v  e.  V  ( M `  ( x 
 .x.  v ) )  =  ( y  .xb  ( M `  v ) ) ) ) )
 
Theoremhgmapval 30769* Value of map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. Function sigma of scalar f in part 14 of [Baer] p. 50 line 4. TODO: variable names are inherited from older version. Maybe make more consistent with hdmap14lem15 30764. (Contributed by NM, 25-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .xb  =  ( .s `  C )   &    |-  M  =  ( (HDMap `  K ) `  W )   &    |-  I  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  Y  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  ( I `  X )  =  ( iota_ y  e.  B A. v  e.  V  ( M `  ( X  .x.  v ) )  =  ( y 
 .xb  ( M `  v ) ) ) )
 
TheoremhgmapfnN 30770 Functionality of scalar sigma map. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  G  Fn  B )
 
Theoremhgmapcl 30771 Closure of scalar sigma map i.e. the map from the vector space scalar base to the dual space scalar base. (Contributed by NM, 6-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  B )   =>    |-  ( ph  ->  ( G `  F )  e.  B )
 
Theoremhgmapdcl 30772 Closure of the vector space to dual space scalar map, in the scalar sigma map. (Contributed by NM, 6-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  Q  =  (Scalar `  C )   &    |-  A  =  ( Base `  Q )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  B )   =>    |-  ( ph  ->  ( G `  F )  e.  A )
 
Theoremhgmapvs 30773 Part 15 of [Baer] p. 50 line 6. Also line 15 in [Holland95] p. 14. (Contributed by NM, 6-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .xb  =  ( .s `  C )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  F  e.  B )   =>    |-  ( ph  ->  ( S `  ( F  .x.  X ) )  =  ( ( G `  F )  .xb  ( S `  X ) ) )
 
Theoremhgmapval0 30774 Value of the scalar sigma map at zero. (Contributed by NM, 12-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  R  =  (Scalar `  U )   &    |-  .0.  =  ( 0g `  R )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  ( G `  .0.  )  =  .0.  )
 
Theoremhgmapval1 30775 Value of the scalar sigma map at one. (Contributed by NM, 12-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  R  =  (Scalar `  U )   &    |-  .1.  =  ( 1r `  R )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  ( G `  .1.  )  =  .1.  )
 
Theoremhgmapadd 30776 Part 15 of [Baer] p. 50 line 13. (Contributed by NM, 6-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( G `  ( X  .+  Y ) )  =  ( ( G `  X )  .+  ( G `
  Y ) ) )
 
Theoremhgmapmul 30777 Part 15 of [Baer] p. 50 line 16. The multiplication is reversed after converting to the dual space scalar to the vector space scalar. (Contributed by NM, 7-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( G `  ( X  .x.  Y ) )  =  ( ( G `  Y )  .x.  ( G `  X ) ) )
 
Theoremhgmaprnlem1N 30778 Lemma for hgmaprnN 30783. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .s `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  (
 Base `  C )   &    |-  P  =  (Scalar `  C )   &    |-  A  =  ( Base `  P )   &    |-  .xb  =  ( .s `  C )   &    |-  Q  =  ( 0g `  C )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  z  e.  A )   &    |-  ( ph  ->  t  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  s  e.  V )   &    |-  ( ph  ->  ( S `  s )  =  ( z  .xb  ( S `  t ) ) )   &    |-  ( ph  ->  k  e.  B )   &    |-  ( ph  ->  s  =  ( k  .x.  t )
 )   =>    |-  ( ph  ->  z  e.  ran  G )
 
Theoremhgmaprnlem2N 30779 Lemma for hgmaprnN 30783. Part 15 of [Baer] p. 50 line 20. We only require a subset relation, rather than equality, so that the case of zero  z is taken care of automatically. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .s `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  (
 Base `  C )   &    |-  P  =  (Scalar `  C )   &    |-  A  =  ( Base `  P )   &    |-  .xb  =  ( .s `  C )   &    |-  Q  =  ( 0g `  C )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  z  e.  A )   &    |-  ( ph  ->  t  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  s  e.  V )   &    |-  ( ph  ->  ( S `  s )  =  ( z  .xb  ( S `  t ) ) )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  N  =  (
 LSpan `  U )   &    |-  L  =  ( LSpan `  C )   =>    |-  ( ph  ->  ( N `  { s } )  C_  ( N `  { t } ) )
 
Theoremhgmaprnlem3N 30780* Lemma for hgmaprnN 30783. Eliminate  k. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .s `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  (
 Base `  C )   &    |-  P  =  (Scalar `  C )   &    |-  A  =  ( Base `  P )   &    |-  .xb  =  ( .s `  C )   &    |-  Q  =  ( 0g `  C )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  z  e.  A )   &    |-  ( ph  ->  t  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  s  e.  V )   &    |-  ( ph  ->  ( S `  s )  =  ( z  .xb  ( S `  t ) ) )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  N  =  (
 LSpan `  U )   &    |-  L  =  ( LSpan `  C )   =>    |-  ( ph  ->  z  e.  ran  G )
 
Theoremhgmaprnlem4N 30781* Lemma for hgmaprnN 30783. Eliminate  s. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .s `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  (
 Base `  C )   &    |-  P  =  (Scalar `  C )   &    |-  A  =  ( Base `  P )   &    |-  .xb  =  ( .s `  C )   &    |-  Q  =  ( 0g `  C )   &    |-  S  =  ( (HDMap `  K ) `  W )   &    |-  G  =  ( (HGMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  z  e.  A )   &    |-  ( ph  ->  t  e.  ( V  \  {  .0.  } ) )   =>    |-  ( ph  ->  z  e.  ran 
 G )
 
Theoremhgmaprnlem5N 30782 Lemma for hgmaprnN 30783. Eliminate  t. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  .x.  =