HomeHome Metamath Proof Explorer
Theorem List (p. 303 of 325)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-22374)
  Hilbert Space Explorer  Hilbert Space Explorer
(22375-23897)
  Users' Mathboxes  Users' Mathboxes
(23898-32447)
 

Theorem List for Metamath Proof Explorer - 30201-30300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremdalem47 30201 Lemma for dath 30218. Analog of dalem45 30199 for  I G. (Contributed by NM, 16-Aug-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K )
 )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  (
 ( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q 
 .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )
 )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
 .\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )   &    |-  .<_  =  ( le `  K )   &    |-  .\/  =  ( join `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  ( ps 
 <->  ( ( c  e.  A  /\  d  e.  A )  /\  -.  c  .<_  Y  /\  (
 d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
 ) ) ) )   &    |-  ./\ 
 =  ( meet `  K )   &    |-  O  =  ( LPlanes `  K )   &    |-  Y  =  ( ( P  .\/  Q )  .\/  R )   &    |-  Z  =  ( ( S  .\/  T )  .\/  U )   &    |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )   &    |-  H  =  ( ( c  .\/  Q )  ./\  ( d  .\/  T ) )   &    |-  I  =  ( ( c  .\/  R )  ./\  ( d  .\/  U ) )   =>    |-  ( ( ph  /\  Y  =  Z  /\  ps )  ->  -.  c  .<_  ( I  .\/  G ) )
 
Theoremdalem48 30202 Lemma for dath 30218. Analog of dalem45 30199 for  P Q. (Contributed by NM, 16-Aug-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K )
 )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  (
 ( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q 
 .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )
 )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
 .\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )   &    |-  .<_  =  ( le `  K )   &    |-  .\/  =  ( join `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  ( ps 
 <->  ( ( c  e.  A  /\  d  e.  A )  /\  -.  c  .<_  Y  /\  (
 d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
 ) ) ) )   &    |-  ./\ 
 =  ( meet `  K )   &    |-  O  =  ( LPlanes `  K )   &    |-  Y  =  ( ( P  .\/  Q )  .\/  R )   &    |-  Z  =  ( ( S  .\/  T )  .\/  U )   &    |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )   &    |-  H  =  ( ( c  .\/  Q )  ./\  ( d  .\/  T ) )   &    |-  I  =  ( ( c  .\/  R )  ./\  ( d  .\/  U ) )   =>    |-  ( ( ph  /\ 
 ps )  ->  -.  c  .<_  ( P  .\/  Q ) )
 
Theoremdalem49 30203 Lemma for dath 30218. Analog of dalem45 30199 for  Q R. (Contributed by NM, 16-Aug-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K )
 )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  (
 ( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q 
 .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )
 )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
 .\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )   &    |-  .<_  =  ( le `  K )   &    |-  .\/  =  ( join `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  ( ps 
 <->  ( ( c  e.  A  /\  d  e.  A )  /\  -.  c  .<_  Y  /\  (
 d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
 ) ) ) )   &    |-  ./\ 
 =  ( meet `  K )   &    |-  O  =  ( LPlanes `  K )   &    |-  Y  =  ( ( P  .\/  Q )  .\/  R )   &    |-  Z  =  ( ( S  .\/  T )  .\/  U )   &    |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )   &    |-  H  =  ( ( c  .\/  Q )  ./\  ( d  .\/  T ) )   &    |-  I  =  ( ( c  .\/  R )  ./\  ( d  .\/  U ) )   =>    |-  ( ( ph  /\ 
 ps )  ->  -.  c  .<_  ( Q  .\/  R ) )
 
Theoremdalem50 30204 Lemma for dath 30218. Analog of dalem45 30199 for  R P. (Contributed by NM, 16-Aug-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K )
 )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  (
 ( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q 
 .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )
 )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
 .\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )   &    |-  .<_  =  ( le `  K )   &    |-  .\/  =  ( join `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  ( ps 
 <->  ( ( c  e.  A  /\  d  e.  A )  /\  -.  c  .<_  Y  /\  (
 d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
 ) ) ) )   &    |-  ./\ 
 =  ( meet `  K )   &    |-  O  =  ( LPlanes `  K )   &    |-  Y  =  ( ( P  .\/  Q )  .\/  R )   &    |-  Z  =  ( ( S  .\/  T )  .\/  U )   &    |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )   &    |-  H  =  ( ( c  .\/  Q )  ./\  ( d  .\/  T ) )   &    |-  I  =  ( ( c  .\/  R )  ./\  ( d  .\/  U ) )   =>    |-  ( ( ph  /\ 
 ps )  ->  -.  c  .<_  ( R  .\/  P ) )
 
Theoremdalem51 30205 Lemma for dath 30218. Construct the condition  ph with  c,  G H I, and 
Y in place of  C,  Y, and  Z respectively. This lets us reuse the special case of Desargues' Theorem where  Y  =/=  Z, to eventually prove the case where  Y  =  Z. (Contributed by NM, 16-Aug-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K )
 )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  (
 ( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q 
 .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )
 )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
 .\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )   &    |-  .<_  =  ( le `  K )   &    |-  .\/  =  ( join `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  ( ps 
 <->  ( ( c  e.  A  /\  d  e.  A )  /\  -.  c  .<_  Y  /\  (
 d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
 ) ) ) )   &    |-  ./\ 
 =  ( meet `  K )   &    |-  O  =  ( LPlanes `  K )   &    |-  Y  =  ( ( P  .\/  Q )  .\/  R )   &    |-  Z  =  ( ( S  .\/  T )  .\/  U )   &    |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )   &    |-  H  =  ( ( c  .\/  Q )  ./\  ( d  .\/  T ) )   &    |-  I  =  ( ( c  .\/  R )  ./\  ( d  .\/  U ) )   =>    |-  ( ( ph  /\  Y  =  Z  /\  ps )  ->  ( (
 ( ( K  e.  HL  /\  c  e.  A )  /\  ( G  e.  A  /\  H  e.  A  /\  I  e.  A )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  /\  ( ( ( G  .\/  H )  .\/  I )  e.  O  /\  Y  e.  O )  /\  ( ( -.  c  .<_  ( G 
 .\/  H )  /\  -.  c  .<_  ( H  .\/  I )  /\  -.  c  .<_  ( I  .\/  G ) )  /\  ( -.  c  .<_  ( P  .\/  Q )  /\  -.  c  .<_  ( Q  .\/  R )  /\  -.  c  .<_  ( R  .\/  P )
 )  /\  ( c  .<_  ( G  .\/  P )  /\  c  .<_  ( H 
 .\/  Q )  /\  c  .<_  ( I  .\/  R ) ) ) ) 
 /\  ( ( G 
 .\/  H )  .\/  I
 )  =/=  Y )
 )
 
Theoremdalem52 30206 Lemma for dath 30218. Lines  G H and  P Q intersect at an atom. (Contributed by NM, 8-Aug-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K )
 )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  (
 ( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q 
 .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )
 )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
 .\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )   &    |-  .<_  =  ( le `  K )   &    |-  .\/  =  ( join `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  ( ps 
 <->  ( ( c  e.  A  /\  d  e.  A )  /\  -.  c  .<_  Y  /\  (
 d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
 ) ) ) )   &    |-  ./\ 
 =  ( meet `  K )   &    |-  O  =  ( LPlanes `  K )   &    |-  Y  =  ( ( P  .\/  Q )  .\/  R )   &    |-  Z  =  ( ( S  .\/  T )  .\/  U )   &    |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )   &    |-  H  =  ( ( c  .\/  Q )  ./\  ( d  .\/  T ) )   &    |-  I  =  ( ( c  .\/  R )  ./\  ( d  .\/  U ) )   =>    |-  ( ( ph  /\  Y  =  Z  /\  ps )  ->  ( ( G  .\/  H )  ./\  ( P  .\/  Q ) )  e.  A )
 
Theoremdalem53 30207 Lemma for dath 30218. The auxliary axis of perspectivity  B is a line (analogous to the actual axis of perspectivity  X in dalem15 30160. (Contributed by NM, 8-Aug-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K )
 )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  (
 ( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q 
 .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )
 )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
 .\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )   &    |-  .<_  =  ( le `  K )   &    |-  .\/  =  ( join `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  ( ps 
 <->  ( ( c  e.  A  /\  d  e.  A )  /\  -.  c  .<_  Y  /\  (
 d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
 ) ) ) )   &    |-  ./\ 
 =  ( meet `  K )   &    |-  N  =  ( LLines `  K )   &    |-  O  =  (
 LPlanes `  K )   &    |-  Y  =  ( ( P  .\/  Q )  .\/  R )   &    |-  Z  =  ( ( S  .\/  T )  .\/  U )   &    |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )   &    |-  H  =  ( ( c  .\/  Q )  ./\  ( d  .\/  T ) )   &    |-  I  =  ( ( c  .\/  R )  ./\  ( d  .\/  U ) )   &    |-  B  =  ( ( ( G 
 .\/  H )  .\/  I
 )  ./\  Y )   =>    |-  ( ( ph  /\  Y  =  Z  /\  ps )  ->  B  e.  N )
 
Theoremdalem54 30208 Lemma for dath 30218. Line  G H intersects the auxiliary axis of perspectivity  B. (Contributed by NM, 8-Aug-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K )
 )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  (
 ( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q 
 .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )
 )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
 .\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )   &    |-  .<_  =  ( le `  K )   &    |-  .\/  =  ( join `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  ( ps 
 <->  ( ( c  e.  A  /\  d  e.  A )  /\  -.  c  .<_  Y  /\  (
 d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
 ) ) ) )   &    |-  ./\ 
 =  ( meet `  K )   &    |-  O  =  ( LPlanes `  K )   &    |-  Y  =  ( ( P  .\/  Q )  .\/  R )   &    |-  Z  =  ( ( S  .\/  T )  .\/  U )   &    |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )   &    |-  H  =  ( ( c  .\/  Q )  ./\  ( d  .\/  T ) )   &    |-  I  =  ( ( c  .\/  R )  ./\  ( d  .\/  U ) )   &    |-  B  =  ( ( ( G 
 .\/  H )  .\/  I
 )  ./\  Y )   =>    |-  ( ( ph  /\  Y  =  Z  /\  ps )  ->  ( ( G  .\/  H )  ./\  B )  e.  A )
 
Theoremdalem55 30209 Lemma for dath 30218. Lines  G H and  P Q intersect at the auxiliary line  B (later shown to be an axis of perspectivity; see dalem60 30214). (Contributed by NM, 8-Aug-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K )
 )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  (
 ( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q 
 .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )
 )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
 .\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )   &    |-  .<_  =  ( le `  K )   &    |-  .\/  =  ( join `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  ( ps 
 <->  ( ( c  e.  A  /\  d  e.  A )  /\  -.  c  .<_  Y  /\  (
 d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
 ) ) ) )   &    |-  ./\ 
 =  ( meet `  K )   &    |-  O  =  ( LPlanes `  K )   &    |-  Y  =  ( ( P  .\/  Q )  .\/  R )   &    |-  Z  =  ( ( S  .\/  T )  .\/  U )   &    |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )   &    |-  H  =  ( ( c  .\/  Q )  ./\  ( d  .\/  T ) )   &    |-  I  =  ( ( c  .\/  R )  ./\  ( d  .\/  U ) )   &    |-  B  =  ( ( ( G 
 .\/  H )  .\/  I
 )  ./\  Y )   =>    |-  ( ( ph  /\  Y  =  Z  /\  ps )  ->  ( ( G  .\/  H )  ./\  ( P  .\/  Q ) )  =  ( ( G  .\/  H )  ./\ 
 B ) )
 
Theoremdalem56 30210 Lemma for dath 30218. Analog of dalem55 30209 for line  S T. (Contributed by NM, 8-Aug-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K )
 )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  (
 ( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q 
 .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )
 )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
 .\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )   &    |-  .<_  =  ( le `  K )   &    |-  .\/  =  ( join `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  ( ps 
 <->  ( ( c  e.  A  /\  d  e.  A )  /\  -.  c  .<_  Y  /\  (
 d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
 ) ) ) )   &    |-  ./\ 
 =  ( meet `  K )   &    |-  O  =  ( LPlanes `  K )   &    |-  Y  =  ( ( P  .\/  Q )  .\/  R )   &    |-  Z  =  ( ( S  .\/  T )  .\/  U )   &    |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )   &    |-  H  =  ( ( c  .\/  Q )  ./\  ( d  .\/  T ) )   &    |-  I  =  ( ( c  .\/  R )  ./\  ( d  .\/  U ) )   &    |-  B  =  ( ( ( G 
 .\/  H )  .\/  I
 )  ./\  Y )   =>    |-  ( ( ph  /\  Y  =  Z  /\  ps )  ->  ( ( G  .\/  H )  ./\  ( S  .\/  T ) )  =  ( ( G  .\/  H )  ./\ 
 B ) )
 
Theoremdalem57 30211 Lemma for dath 30218. Axis of perspectivity point  D is on the auxiliary line  B. (Contributed by NM, 9-Aug-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K )
 )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  (
 ( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q 
 .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )
 )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
 .\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )   &    |-  .<_  =  ( le `  K )   &    |-  .\/  =  ( join `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  ( ps 
 <->  ( ( c  e.  A  /\  d  e.  A )  /\  -.  c  .<_  Y  /\  (
 d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
 ) ) ) )   &    |-  ./\ 
 =  ( meet `  K )   &    |-  O  =  ( LPlanes `  K )   &    |-  Y  =  ( ( P  .\/  Q )  .\/  R )   &    |-  Z  =  ( ( S  .\/  T )  .\/  U )   &    |-  D  =  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )   &    |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )   &    |-  H  =  ( ( c  .\/  Q )  ./\  ( d  .\/  T ) )   &    |-  I  =  ( ( c  .\/  R )  ./\  ( d  .\/  U ) )   &    |-  B  =  ( ( ( G 
 .\/  H )  .\/  I
 )  ./\  Y )   =>    |-  ( ( ph  /\  Y  =  Z  /\  ps )  ->  D  .<_  B )
 
Theoremdalem58 30212 Lemma for dath 30218. Analog of dalem57 30211 for  E. (Contributed by NM, 10-Aug-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K )
 )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  (
 ( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q 
 .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )
 )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
 .\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )   &    |-  .<_  =  ( le `  K )   &    |-  .\/  =  ( join `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  ( ps 
 <->  ( ( c  e.  A  /\  d  e.  A )  /\  -.  c  .<_  Y  /\  (
 d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
 ) ) ) )   &    |-  ./\ 
 =  ( meet `  K )   &    |-  O  =  ( LPlanes `  K )   &    |-  Y  =  ( ( P  .\/  Q )  .\/  R )   &    |-  Z  =  ( ( S  .\/  T )  .\/  U )   &    |-  E  =  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )   &    |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )   &    |-  H  =  ( ( c  .\/  Q )  ./\  ( d  .\/  T ) )   &    |-  I  =  ( ( c  .\/  R )  ./\  ( d  .\/  U ) )   &    |-  B  =  ( ( ( G 
 .\/  H )  .\/  I
 )  ./\  Y )   =>    |-  ( ( ph  /\  Y  =  Z  /\  ps )  ->  E  .<_  B )
 
Theoremdalem59 30213 Lemma for dath 30218. Analog of dalem57 30211 for  F. (Contributed by NM, 10-Aug-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K )
 )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  (
 ( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q 
 .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )
 )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
 .\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )   &    |-  .<_  =  ( le `  K )   &    |-  .\/  =  ( join `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  ( ps 
 <->  ( ( c  e.  A  /\  d  e.  A )  /\  -.  c  .<_  Y  /\  (
 d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
 ) ) ) )   &    |-  ./\ 
 =  ( meet `  K )   &    |-  O  =  ( LPlanes `  K )   &    |-  Y  =  ( ( P  .\/  Q )  .\/  R )   &    |-  Z  =  ( ( S  .\/  T )  .\/  U )   &    |-  F  =  ( ( R  .\/  P )  ./\  ( U  .\/  S ) )   &    |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )   &    |-  H  =  ( ( c  .\/  Q )  ./\  ( d  .\/  T ) )   &    |-  I  =  ( ( c  .\/  R )  ./\  ( d  .\/  U ) )   &    |-  B  =  ( ( ( G 
 .\/  H )  .\/  I
 )  ./\  Y )   =>    |-  ( ( ph  /\  Y  =  Z  /\  ps )  ->  F  .<_  B )
 
Theoremdalem60 30214 Lemma for dath 30218. 
B is an axis of perspectivity (almost). (Contributed by NM, 11-Aug-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K )
 )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  (
 ( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q 
 .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )
 )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
 .\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )   &    |-  .<_  =  ( le `  K )   &    |-  .\/  =  ( join `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  ( ps 
 <->  ( ( c  e.  A  /\  d  e.  A )  /\  -.  c  .<_  Y  /\  (
 d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
 ) ) ) )   &    |-  ./\ 
 =  ( meet `  K )   &    |-  O  =  ( LPlanes `  K )   &    |-  Y  =  ( ( P  .\/  Q )  .\/  R )   &    |-  Z  =  ( ( S  .\/  T )  .\/  U )   &    |-  D  =  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )   &    |-  E  =  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )   &    |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )   &    |-  H  =  ( ( c  .\/  Q )  ./\  ( d  .\/  T ) )   &    |-  I  =  ( ( c  .\/  R )  ./\  ( d  .\/  U ) )   &    |-  B  =  ( ( ( G 
 .\/  H )  .\/  I
 )  ./\  Y )   =>    |-  ( ( ph  /\  Y  =  Z  /\  ps )  ->  ( D  .\/  E )  =  B )
 
Theoremdalem61 30215 Lemma for dath 30218. Show that atoms  D,  E, and  F lie on the same line (axis of perspectivity). Eliminate hypotheses containing dummy atoms  c and  d. (Contributed by NM, 11-Aug-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K )
 )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  (
 ( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q 
 .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )
 )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
 .\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )   &    |-  .<_  =  ( le `  K )   &    |-  .\/  =  ( join `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  ( ps 
 <->  ( ( c  e.  A  /\  d  e.  A )  /\  -.  c  .<_  Y  /\  (
 d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
 ) ) ) )   &    |-  ./\ 
 =  ( meet `  K )   &    |-  O  =  ( LPlanes `  K )   &    |-  Y  =  ( ( P  .\/  Q )  .\/  R )   &    |-  Z  =  ( ( S  .\/  T )  .\/  U )   &    |-  D  =  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )   &    |-  E  =  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )   &    |-  F  =  ( ( R  .\/  P )  ./\  ( U  .\/  S ) )   =>    |-  ( ( ph  /\  Y  =  Z  /\  ps )  ->  F  .<_  ( D  .\/  E )
 )
 
Theoremdalem62 30216 Lemma for dath 30218. Eliminate the condition  ps containing dummy variables  c and  d. (Contributed by NM, 11-Aug-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K )
 )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  (
 ( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q 
 .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )
 )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
 .\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )   &    |-  .<_  =  ( le `  K )   &    |-  .\/  =  ( join `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  O  =  ( LPlanes `  K )   &    |-  Y  =  ( ( P  .\/  Q )  .\/  R )   &    |-  Z  =  ( ( S  .\/  T )  .\/  U )   &    |-  D  =  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )   &    |-  E  =  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )   &    |-  F  =  ( ( R  .\/  P )  ./\  ( U  .\/  S ) )   =>    |-  ( ( ph  /\  Y  =  Z ) 
 ->  F  .<_  ( D  .\/  E ) )
 
Theoremdalem63 30217 Lemma for dath 30218. Combine the cases where  Y and  Z are different planes with the case where  Y and 
Z are the same plane. (Contributed by NM, 11-Aug-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K )
 )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  (
 ( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q 
 .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )
 )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
 .\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )   &    |-  .<_  =  ( le `  K )   &    |-  .\/  =  ( join `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  O  =  ( LPlanes `  K )   &    |-  Y  =  ( ( P  .\/  Q )  .\/  R )   &    |-  Z  =  ( ( S  .\/  T )  .\/  U )   &    |-  D  =  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )   &    |-  E  =  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )   &    |-  F  =  ( ( R  .\/  P )  ./\  ( U  .\/  S ) )   =>    |-  ( ph  ->  F 
 .<_  ( D  .\/  E ) )
 
Theoremdath 30218 Desargues' Theorem of projective geometry (proved for a Hilbert lattice). Assume each triple of atoms (points)  P Q R and  S T U forms a triangle (i.e. determines a plane). Assume that lines  P S,  Q T, and  R U meet at a "center of perspectivity"  C. (We also assume that  C is not on any of the 6 lines forming the two triangles.) Then the atoms 
D  =  ( P 
.\/  Q )  ./\  ( S  .\/  T ),  E  =  ( Q  .\/  R ) 
./\  ( T  .\/  U ),  F  =  ( R  .\/  P ) 
./\  ( U  .\/  S ) are colinear, forming an "axis of perspectivity".

Our proof roughly follows Theorem 2.7.1, p. 78 in Beutelspacher and Rosenbaum, Projective Geometry: From Foundations to Applications, Cambridge University Press (1988). Unlike them, we don't assume  C is an atom to make this theorem slightly more general for easier future use. However, we prove that 
C must be an atom in dalemcea 30142.

For a visual demonstration, see the "Desargue's Theorem" applet at http://www.dynamicgeometry.com/JavaSketchpad/Gallery.html. The points I, J, and K there define the axis of perspectivity.

See theorem dalaw 30368 for Desargues Law, which eliminates all of the preconditions on the atoms except for central perspectivity. (Contributed by NM, 20-Aug-2012.)

 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  O  =  ( LPlanes `  K )   &    |-  D  =  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )   &    |-  E  =  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )   &    |-  F  =  ( ( R  .\/  P )  ./\  ( U  .\/  S ) )   =>    |-  ( ( ( ( K  e.  HL  /\  C  e.  B ) 
 /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) 
 /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( ( ( P  .\/  Q )  .\/  R )  e.  O  /\  ( ( S  .\/  T )  .\/  U )  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P )
 )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )
 )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
 .\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) 
 ->  F  .<_  ( D  .\/  E ) )
 
Theoremdath2 30219 Version of Desargues' Theorem dath 30218 with a different variable ordering. (Contributed by NM, 7-Oct-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  O  =  ( LPlanes `  K )   &    |-  D  =  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )   &    |-  E  =  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )   &    |-  F  =  ( ( R  .\/  P )  ./\  ( U  .\/  S ) )   =>    |-  ( ( ( ( K  e.  HL  /\  C  e.  B ) 
 /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) 
 /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( ( ( P  .\/  Q )  .\/  R )  e.  O  /\  ( ( S  .\/  T )  .\/  U )  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P )
 )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )
 )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
 .\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) 
 ->  D  .<_  ( E  .\/  F ) )
 
Theoremlineset 30220* The set of lines in a Hilbert lattice. (Contributed by NM, 19-Sep-2011.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  N  =  ( Lines `  K )   =>    |-  ( K  e.  B  ->  N  =  { s  | 
 E. q  e.  A  E. r  e.  A  ( q  =/=  r  /\  s  =  { p  e.  A  |  p  .<_  ( q  .\/  r ) } ) } )
 
Theoremisline 30221* The predicate "is a line". (Contributed by NM, 19-Sep-2011.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  N  =  ( Lines `  K )   =>    |-  ( K  e.  D  ->  ( X  e.  N  <->  E. q  e.  A  E. r  e.  A  ( q  =/=  r  /\  X  =  { p  e.  A  |  p  .<_  ( q  .\/  r ) } ) ) )
 
Theoremislinei 30222* Condition implying "is a line". (Contributed by NM, 3-Feb-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  N  =  ( Lines `  K )   =>    |-  (
 ( ( K  e.  D  /\  Q  e.  A  /\  R  e.  A ) 
 /\  ( Q  =/=  R 
 /\  X  =  { p  e.  A  |  p  .<_  ( Q  .\/  R ) } ) ) 
 ->  X  e.  N )
 
TheorempointsetN 30223* The set of points in a Hilbert lattice. (Contributed by NM, 2-Oct-2011.) (New usage is discouraged.)
 |-  A  =  ( Atoms `  K )   &    |-  P  =  ( Points `  K )   =>    |-  ( K  e.  B  ->  P  =  { p  |  E. a  e.  A  p  =  { a } } )
 
TheoremispointN 30224* The predicate "is a point". (Contributed by NM, 2-Oct-2011.) (New usage is discouraged.)
 |-  A  =  ( Atoms `  K )   &    |-  P  =  ( Points `  K )   =>    |-  ( K  e.  D  ->  ( X  e.  P  <->  E. a  e.  A  X  =  { a } ) )
 
TheorematpointN 30225 The singleton of an atom is a point. (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.)
 |-  A  =  ( Atoms `  K )   &    |-  P  =  ( Points `  K )   =>    |-  (
 ( K  e.  D  /\  X  e.  A ) 
 ->  { X }  e.  P )
 
Theorempsubspset 30226* The set of projective subspaces in a Hilbert lattice. (Contributed by NM, 2-Oct-2011.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  S  =  ( PSubSp `  K )   =>    |-  ( K  e.  B  ->  S  =  { s  |  ( s  C_  A  /\  A. p  e.  s  A. q  e.  s  A. r  e.  A  ( r  .<_  ( p 
 .\/  q )  ->  r  e.  s )
 ) } )
 
Theoremispsubsp 30227* The predicate "is a projective subspace". (Contributed by NM, 2-Oct-2011.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  S  =  ( PSubSp `  K )   =>    |-  ( K  e.  D  ->  ( X  e.  S  <->  ( X  C_  A  /\  A. p  e.  X  A. q  e.  X  A. r  e.  A  ( r  .<_  ( p  .\/  q )  ->  r  e.  X ) ) ) )
 
Theoremispsubsp2 30228* The predicate "is a projective subspace". (Contributed by NM, 13-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  S  =  ( PSubSp `  K )   =>    |-  ( K  e.  D  ->  ( X  e.  S  <->  ( X  C_  A  /\  A. p  e.  A  ( E. q  e.  X  E. r  e.  X  p  .<_  ( q 
 .\/  r )  ->  p  e.  X )
 ) ) )
 
Theorempsubspi 30229* Property of a projective subspace. (Contributed by NM, 13-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  S  =  ( PSubSp `  K )   =>    |-  (
 ( ( K  e.  D  /\  X  e.  S  /\  P  e.  A ) 
 /\  E. q  e.  X  E. r  e.  X  P  .<_  ( q  .\/  r ) )  ->  P  e.  X )
 
Theorempsubspi2N 30230 Property of a projective subspace. (Contributed by NM, 13-Jan-2012.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  S  =  ( PSubSp `  K )   =>    |-  (
 ( ( K  e.  D  /\  X  e.  S  /\  P  e.  A ) 
 /\  ( Q  e.  X  /\  R  e.  X  /\  P  .<_  ( Q  .\/  R ) ) )  ->  P  e.  X )
 
Theorem0psubN 30231 The empty set is a projective subspace. Remark below Definition 15.1 of [MaedaMaeda] p. 61. (Contributed by NM, 13-Oct-2011.) (New usage is discouraged.)
 |-  S  =  ( PSubSp `  K )   =>    |-  ( K  e.  V  ->  (/)  e.  S )
 
TheoremsnatpsubN 30232 The singleton of an atom is a projective subspace. (Contributed by NM, 9-Sep-2013.) (New usage is discouraged.)
 |-  A  =  ( Atoms `  K )   &    |-  S  =  ( PSubSp `  K )   =>    |-  (
 ( K  e.  AtLat  /\  P  e.  A ) 
 ->  { P }  e.  S )
 
TheorempointpsubN 30233 A point (singleton of an atom) is a projective subspace. Remark below Definition 15.1 of [MaedaMaeda] p. 61. (Contributed by NM, 13-Oct-2011.) (New usage is discouraged.)
 |-  P  =  ( Points `  K )   &    |-  S  =  ( PSubSp `  K )   =>    |-  (
 ( K  e.  AtLat  /\  X  e.  P ) 
 ->  X  e.  S )
 
TheoremlinepsubN 30234 A line is a projective subspace. (Contributed by NM, 16-Oct-2011.) (New usage is discouraged.)
 |-  N  =  ( Lines `  K )   &    |-  S  =  ( PSubSp `  K )   =>    |-  (
 ( K  e.  Lat  /\  X  e.  N ) 
 ->  X  e.  S )
 
TheorematpsubN 30235 The set of all atoms is a projective subspace. Remark below Definition 15.1 of [MaedaMaeda] p. 61. (Contributed by NM, 13-Oct-2011.) (New usage is discouraged.)
 |-  A  =  ( Atoms `  K )   &    |-  S  =  ( PSubSp `  K )   =>    |-  ( K  e.  V  ->  A  e.  S )
 
Theorempsubssat 30236 A projective subspace consists of atoms. (Contributed by NM, 4-Nov-2011.)
 |-  A  =  ( Atoms `  K )   &    |-  S  =  ( PSubSp `  K )   =>    |-  (
 ( K  e.  B  /\  X  e.  S ) 
 ->  X  C_  A )
 
TheorempsubatN 30237 A member of a projective subspace is an atom. (Contributed by NM, 4-Nov-2011.) (New usage is discouraged.)
 |-  A  =  ( Atoms `  K )   &    |-  S  =  ( PSubSp `  K )   =>    |-  (
 ( K  e.  B  /\  X  e.  S  /\  Y  e.  X )  ->  Y  e.  A )
 
Theorempmapfval 30238* The projective map of a Hilbert lattice. (Contributed by NM, 2-Oct-2011.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  M  =  (
 pmap `  K )   =>    |-  ( K  e.  C  ->  M  =  ( x  e.  B  |->  { a  e.  A  |  a  .<_  x } )
 )
 
Theorempmapval 30239* Value of the projective map of a Hilbert lattice. Definition in Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 2-Oct-2011.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  M  =  (
 pmap `  K )   =>    |-  ( ( K  e.  C  /\  X  e.  B )  ->  ( M `  X )  =  { a  e.  A  |  a  .<_  X }
 )
 
Theoremelpmap 30240 Member of a projective map. (Contributed by NM, 27-Jan-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  M  =  (
 pmap `  K )   =>    |-  ( ( K  e.  C  /\  X  e.  B )  ->  ( P  e.  ( M `  X )  <->  ( P  e.  A  /\  P  .<_  X ) ) )
 
Theorempmapssat 30241 The projective map of a Hilbert lattice is a set of atoms. (Contributed by NM, 14-Jan-2012.)
 |-  B  =  ( Base `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  M  =  ( pmap `  K )   =>    |-  (
 ( K  e.  C  /\  X  e.  B ) 
 ->  ( M `  X )  C_  A )
 
TheorempmapssbaN 30242 A weakening of pmapssat 30241 to shorten some proofs. (Contributed by NM, 7-Mar-2012.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  M  =  ( pmap `  K )   =>    |-  (
 ( K  e.  C  /\  X  e.  B ) 
 ->  ( M `  X )  C_  B )
 
Theorempmaple 30243 The projective map of a Hilbert lattice preserves ordering. Part of Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 22-Oct-2011.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  M  =  ( pmap `  K )   =>    |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B ) 
 ->  ( X  .<_  Y  <->  ( M `  X )  C_  ( M `
  Y ) ) )
 
Theorempmap11 30244 The projective map of a Hilbert lattice is one-to-one. Part of Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 22-Oct-2011.)
 |-  B  =  ( Base `  K )   &    |-  M  =  ( pmap `  K )   =>    |-  (
 ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( M `  X )  =  ( M `  Y )  <->  X  =  Y ) )
 
Theorempmapat 30245 The projective map of an atom. (Contributed by NM, 25-Jan-2012.)
 |-  A  =  ( Atoms `  K )   &    |-  M  =  ( pmap `  K )   =>    |-  (
 ( K  e.  HL  /\  P  e.  A ) 
 ->  ( M `  P )  =  { P } )
 
Theoremelpmapat 30246 Member of the projective map of an atom. (Contributed by NM, 27-Jan-2012.)
 |-  A  =  ( Atoms `  K )   &    |-  M  =  ( pmap `  K )   =>    |-  (
 ( K  e.  HL  /\  P  e.  A ) 
 ->  ( X  e.  ( M `  P )  <->  X  =  P ) )
 
Theorempmap0 30247 Value of the projective map of a Hilbert lattice at lattice zero. Part of Theorem 15.5.1 of [MaedaMaeda] p. 62. (Contributed by NM, 17-Oct-2011.)
 |-  .0.  =  ( 0. `  K )   &    |-  M  =  ( pmap `  K )   =>    |-  ( K  e.  AtLat  ->  ( M `  .0.  )  =  (/) )
 
Theorempmapeq0 30248 A projective map value is zero iff its argument is lattice zero. (Contributed by NM, 27-Jan-2012.)
 |-  B  =  ( Base `  K )   &    |-  .0.  =  ( 0. `  K )   &    |-  M  =  ( pmap `  K )   =>    |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( ( M `
  X )  =  (/) 
 <->  X  =  .0.  )
 )
 
Theorempmap1N 30249 Value of the projective map of a Hilbert lattice at lattice unit. Part of Theorem 15.5.1 of [MaedaMaeda] p. 62. (Contributed by NM, 22-Oct-2011.) (New usage is discouraged.)
 |-  .1.  =  ( 1. `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  M  =  (
 pmap `  K )   =>    |-  ( K  e.  OP  ->  ( M `  .1.  )  =  A )
 
Theorempmapsub 30250 The projective map of a Hilbert lattice maps to projective subspaces. Part of Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 17-Oct-2011.)
 |-  B  =  ( Base `  K )   &    |-  S  =  ( PSubSp `  K )   &    |-  M  =  ( pmap `  K )   =>    |-  (
 ( K  e.  Lat  /\  X  e.  B ) 
 ->  ( M `  X )  e.  S )
 
Theorempmapglbx 30251* The projective map of the GLB of a set of lattice elements. Index-set version of pmapglb 30252, where we read  S as  S ( i ). Theorem 15.5.2 of [MaedaMaeda] p. 62. (Contributed by NM, 5-Dec-2011.)
 |-  B  =  ( Base `  K )   &    |-  G  =  ( glb `  K )   &    |-  M  =  ( pmap `  K )   =>    |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B  /\  I  =/=  (/) )  ->  ( M `  ( G `
  { y  | 
 E. i  e.  I  y  =  S }
 ) )  =  |^|_ i  e.  I  ( M `
  S ) )
 
Theorempmapglb 30252* The projective map of the GLB of a set of lattice elements  S. Variant of Theorem 15.5.2 of [MaedaMaeda] p. 62. (Contributed by NM, 5-Dec-2011.)
 |-  B  =  ( Base `  K )   &    |-  G  =  ( glb `  K )   &    |-  M  =  ( pmap `  K )   =>    |-  ( ( K  e.  HL  /\  S  C_  B  /\  S  =/=  (/) )  ->  ( M `  ( G `
  S ) )  =  |^|_ x  e.  S  ( M `  x ) )
 
Theorempmapglb2N 30253* The projective map of the GLB of a set of lattice elements  S. Variant of Theorem 15.5.2 of [MaedaMaeda] p. 62. Allows  S  =  (/). (Contributed by NM, 21-Jan-2012.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  G  =  ( glb `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  M  =  (
 pmap `  K )   =>    |-  ( ( K  e.  HL  /\  S  C_  B )  ->  ( M `  ( G `  S ) )  =  ( A  i^i  |^|_ x  e.  S  ( M `  x ) ) )
 
Theorempmapglb2xN 30254* The projective map of the GLB of a set of lattice elements. Index-set version of pmapglb2N 30253, where we read  S as  S ( i ). Extension of Theorem 15.5.2 of [MaedaMaeda] p. 62 that allows  I  =  (/). (Contributed by NM, 21-Jan-2012.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  G  =  ( glb `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  M  =  (
 pmap `  K )   =>    |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B )  ->  ( M `  ( G `  { y  |  E. i  e.  I  y  =  S } ) )  =  ( A  i^i  |^|_ i  e.  I  ( M `  S ) ) )
 
Theorempmapmeet 30255 The projective map of a meet. (Contributed by NM, 25-Jan-2012.)
 |-  B  =  ( Base `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  P  =  ( pmap `  K )   =>    |-  (
 ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( P `  ( X  ./\  Y ) )  =  ( ( P `
  X )  i^i  ( P `  Y ) ) )
 
Theoremisline2 30256* Definition of line in terms of projective map. (Contributed by NM, 25-Jan-2012.)
 |-  .\/  =  ( join `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  N  =  ( Lines `  K )   &    |-  M  =  ( pmap `  K )   =>    |-  ( K  e.  Lat  ->  ( X  e.  N  <->  E. p  e.  A  E. q  e.  A  ( p  =/=  q  /\  X  =  ( M `
  ( p  .\/  q ) ) ) ) )
 
Theoremlinepmap 30257 A line described with a projective map. (Contributed by NM, 3-Feb-2012.)
 |-  .\/  =  ( join `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  N  =  ( Lines `  K )   &    |-  M  =  ( pmap `  K )   =>    |-  (
 ( ( K  e.  Lat  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q ) 
 ->  ( M `  ( P  .\/  Q ) )  e.  N )
 
Theoremisline3 30258* Definition of line in terms of original lattice elements. (Contributed by NM, 29-Apr-2012.)
 |-  B  =  ( Base `  K )   &    |-  .\/  =  ( join `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  N  =  ( Lines `  K )   &    |-  M  =  ( pmap `  K )   =>    |-  (
 ( K  e.  HL  /\  X  e.  B ) 
 ->  ( ( M `  X )  e.  N  <->  E. p  e.  A  E. q  e.  A  ( p  =/=  q  /\  X  =  ( p  .\/  q
 ) ) ) )
 
Theoremisline4N 30259* Definition of line in terms of original lattice elements. (Contributed by NM, 16-Jun-2012.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  C  =  (  <o  `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  N  =  (
 Lines `  K )   &    |-  M  =  ( pmap `  K )   =>    |-  (
 ( K  e.  HL  /\  X  e.  B ) 
 ->  ( ( M `  X )  e.  N  <->  E. p  e.  A  p C X ) )
 
Theoremlneq2at 30260 A line equals the join of any two of its distinct points (atoms). (Contributed by NM, 29-Apr-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  N  =  ( Lines `  K )   &    |-  M  =  ( pmap `  K )   =>    |-  (
 ( ( K  e.  HL  /\  X  e.  B  /\  ( M `  X )  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( P  .<_  X  /\  Q  .<_  X ) ) 
 ->  X  =  ( P 
 .\/  Q ) )
 
TheoremlnatexN 30261* There is an atom in a line different from any other. (Contributed by NM, 30-Apr-2012.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  N  =  (
 Lines `  K )   &    |-  M  =  ( pmap `  K )   =>    |-  (
 ( K  e.  HL  /\  X  e.  B  /\  ( M `  X )  e.  N )  ->  E. q  e.  A  ( q  =/=  P  /\  q  .<_  X ) )
 
TheoremlnjatN 30262* Given an atom in a line, there is another atom which when joined equals the line. (Contributed by NM, 30-Apr-2012.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  N  =  ( Lines `  K )   &    |-  M  =  ( pmap `  K )   =>    |-  (
 ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A ) 
 /\  ( ( M `
  X )  e.  N  /\  P  .<_  X ) )  ->  E. q  e.  A  ( q  =/= 
 P  /\  X  =  ( P  .\/  q ) ) )
 
TheoremlncvrelatN 30263 A lattice element covered by a line is an atom. (Contributed by NM, 28-Apr-2012.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  C  =  (  <o  `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  N  =  (
 Lines `  K )   &    |-  M  =  ( pmap `  K )   =>    |-  (
 ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B ) 
 /\  ( ( M `
  X )  e.  N  /\  P C X ) )  ->  P  e.  A )
 
Theoremlncvrat 30264 A line covers the atoms it contains. (Contributed by NM, 30-Apr-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  C  =  (  <o  `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  N  =  ( Lines `  K )   &    |-  M  =  ( pmap `  K )   =>    |-  (
 ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A ) 
 /\  ( ( M `
  X )  e.  N  /\  P  .<_  X ) )  ->  P C X )
 
Theoremlncmp 30265 If two lines are comparable, they are equal. (Contributed by NM, 30-Apr-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  N  =  ( Lines `  K )   &    |-  M  =  (
 pmap `  K )   =>    |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( M `  X )  e.  N  /\  ( M `  Y )  e.  N )
 )  ->  ( X  .<_  Y  <->  X  =  Y ) )
 
Theorem2lnat 30266 Two intersecting lines intersect at an atom. (Contributed by NM, 30-Apr-2012.)
 |-  B  =  ( Base `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  .0.  =  ( 0. `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  N  =  (
 Lines `  K )   &    |-  F  =  ( pmap `  K )   =>    |-  (
 ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B ) 
 /\  ( ( F `
  X )  e.  N  /\  ( F `
  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y )  =/= 
 .0.  ) )  ->  ( X  ./\  Y )  e.  A )
 
Theorem2atm2atN 30267 Two joins with a common atom have a nonzero meet. (Contributed by NM, 4-Jul-2012.) (New usage is discouraged.)
 |-  .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  .0.  =  ( 0. `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  ->  ( ( R  .\/  P )  ./\  ( R  .\/  Q ) )  =/=  .0.  )
 
Theorem2llnma1b 30268 Generalization of 2llnma1 30269. (Contributed by NM, 26-Apr-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  (
 ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A )  /\  -.  Q  .<_  ( P 
 .\/  X ) )  ->  ( ( P  .\/  X )  ./\  ( P  .\/  Q ) )  =  P )
 
Theorem2llnma1 30269 Two different intersecting lines (expressed in terms of atoms) meet at their common point (atom). (Contributed by NM, 11-Oct-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  (
 ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  -.  R  .<_  ( P 
 .\/  Q ) )  ->  ( ( Q  .\/  P )  ./\  ( Q  .\/  R ) )  =  Q )
 
Theorem2llnma3r 30270 Two different intersecting lines (expressed in terms of atoms) meet at their common point (atom). (Contributed by NM, 30-Apr-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  (
 ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .\/  R )  =/=  ( Q  .\/  R ) )  ->  (
 ( P  .\/  R )  ./\  ( Q  .\/  R ) )  =  R )
 
Theorem2llnma2 30271 Two different intersecting lines (expressed in terms of atoms) meet at their common point (atom). (Contributed by NM, 28-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  (
 ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
 .\/  Q ) ) ) 
 ->  ( ( R  .\/  P )  ./\  ( R  .\/  Q ) )  =  R )
 
Theorem2llnma2rN 30272 Two different intersecting lines (expressed in terms of atoms) meet at their common point (atom). (Contributed by NM, 2-May-2013.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  (
 ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
 .\/  Q ) ) ) 
 ->  ( ( P  .\/  R )  ./\  ( Q  .\/  R ) )  =  R )
 
19.26.10  Construction of a vector space from a Hilbert lattice
 
Theoremcdlema1N 30273 A condition for required for proof of Lemma A in [Crawley] p. 112. (Contributed by NM, 29-Apr-2012.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  N  =  ( Lines `  K )   &    |-  F  =  ( pmap `  K )   =>    |-  (
 ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B ) 
 /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) 
 /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q ) )  /\  ( P 
 .<_  X  /\  Q  .<_  Y )  /\  ( ( F `  Y )  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) ) 
 ->  ( X  .\/  R )  =  ( X  .\/  Y ) )
 
Theoremcdlema2N 30274 A condition for required for proof of Lemma A in [Crawley] p. 112. (Contributed by NM, 9-May-2012.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  .0.  =  ( 0. `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( ( R  =/=  P 
 /\  R  .<_  ( P 
 .\/  Q ) )  /\  ( P  .<_  X  /\  -.  Q  .<_  X ) ) )  ->  ( R  ./\ 
 X )  =  .0.  )
 
Theoremcdlemblem 30275 Lemma for cdlemb 30276. (Contributed by NM, 8-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  .1.  =  ( 1. `  K )   &    |-  C  =  (  <o  `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .<  =  ( lt `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  V  =  ( ( P  .\/  Q )  ./\ 
 X )   =>    |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q ) 
 /\  ( X C  .1.  /\  -.  P  .<_  X 
 /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  ( u  =/=  V  /\  u  .<  X ) ) 
 /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u )
 ) ) )  ->  ( -.  r  .<_  X  /\  -.  r  .<_  ( P  .\/  Q ) ) )
 
Theoremcdlemb 30276* Given two atoms not less than or equal to an element covered by 1, there is a third. Lemma B in [Crawley] p. 112. (Contributed by NM, 8-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  .1.  =  ( 1. `  K )   &    |-  C  =  (  <o  `  K )   &    |-  A  =  (
 Atoms `  K )   =>    |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q ) 
 /\  ( X C  .1.  /\  -.  P  .<_  X 
 /\  -.  Q  .<_  X ) )  ->  E. r  e.  A  ( -.  r  .<_  X  /\  -.  r  .<_  ( P  .\/  Q ) ) )
 
Syntaxcpadd 30277 Extend class notation with projective subspace sum.
 class  + P
 
Definitiondf-padd 30278* Define projective sum of two subspaces (or more generally two sets of atoms), which is the union of all lines generated by pairs of atoms from each subspace. Lemma 16.2 of [MaedaMaeda] p. 68. For convenience, our definition is generalized to apply to empty sets. (Contributed by NM, 29-Dec-2011.)
 |-  + P  =  ( l  e.  _V  |->  ( m  e. 
 ~P ( Atoms `  l
 ) ,  n  e. 
 ~P ( Atoms `  l
 )  |->  ( ( m  u.  n )  u. 
 { p  e.  ( Atoms `  l )  | 
 E. q  e.  m  E. r  e.  n  p ( le `  l
 ) ( q (
 join `  l ) r ) } ) ) )
 
Theorempaddfval 30279* Projective subspace sum operation. (Contributed by NM, 29-Dec-2011.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( K  e.  B  ->  .+  =  ( m  e.  ~P A ,  n  e.  ~P A  |->  ( ( m  u.  n )  u.  { p  e.  A  |  E. q  e.  m  E. r  e.  n  p  .<_  ( q  .\/  r ) } ) ) )
 
Theorempaddval 30280* Projective subspace sum operation value. (Contributed by NM, 29-Dec-2011.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  B  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  =  ( ( X  u.  Y )  u. 
 { p  e.  A  |  E. q  e.  X  E. r  e.  Y  p  .<_  ( q  .\/  r ) } )
 )
 
Theoremelpadd 30281* Member of a projective subspace sum. (Contributed by NM, 29-Dec-2011.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  B  /\  X  C_  A  /\  Y  C_  A )  ->  ( S  e.  ( X  .+  Y )  <->  ( ( S  e.  X  \/  S  e.  Y )  \/  ( S  e.  A  /\  E. q  e.  X  E. r  e.  Y  S  .<_  ( q  .\/  r
 ) ) ) ) )
 
Theoremelpaddn0 30282* Member of projective subspace sum of non-empty sets. (Contributed by NM, 3-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) ) 
 ->  ( S  e.  ( X  .+  Y )  <->  ( S  e.  A  /\  E. q  e.  X  E. r  e.  Y  S  .<_  ( q 
 .\/  r ) ) ) )
 
Theorempaddvaln0N 30283* Projective subspace sum operation value for non-empty sets. (Contributed by NM, 27-Jan-2012.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) ) 
 ->  ( X  .+  Y )  =  { p  e.  A  |  E. q  e.  X  E. r  e.  Y  p  .<_  ( q 
 .\/  r ) }
 )
 
Theoremelpaddri 30284 Condition implying membership in a projective subspace sum. (Contributed by NM, 8-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( Q  e.  X  /\  R  e.  Y )  /\  ( S  e.  A  /\  S  .<_  ( Q 
 .\/  R ) ) ) 
 ->  S  e.  ( X 
 .+  Y ) )
 
TheoremelpaddatriN 30285 Condition implying membership in a projective subspace sum with a point. (Contributed by NM, 1-Feb-2012.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Q  e.  A )  /\  ( R  e.  X  /\  S  e.  A  /\  S  .<_  ( R  .\/  Q ) ) )  ->  S  e.  ( X  .+ 
 { Q } )
 )
 
Theoremelpaddat 30286* Membership in a projective subspace sum with a point. (Contributed by NM, 29-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Q  e.  A )  /\  X  =/=  (/) )  ->  ( S  e.  ( X  .+  { Q }
 ) 
 <->  ( S  e.  A  /\  E. p  e.  X  S  .<_  ( p  .\/  Q ) ) ) )
 
TheoremelpaddatiN 30287* Consequence of membership in a projective subspace sum with a point. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Q  e.  A )  /\  ( X  =/=  (/)  /\  R  e.  ( X 
 .+  { Q } )
 ) )  ->  E. p  e.  X  R  .<_  ( p 
 .\/  Q ) )
 
Theoremelpadd2at 30288 Membership in a projective subspace sum of two points. (Contributed by NM, 29-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  Lat  /\  Q  e.  A  /\  R  e.  A )  ->  ( S  e.  ( { Q }  .+  { R } )  <->  ( S  e.  A  /\  S  .<_  ( Q 
 .\/  R ) ) ) )
 
Theoremelpadd2at2 30289 Membership in a projective subspace sum of two points. (Contributed by NM, 8-Mar-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  Lat  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A )
 )  ->  ( S  e.  ( { Q }  .+  { R } )  <->  S 
 .<_  ( Q  .\/  R ) ) )
 
TheorempaddunssN 30290 Projective subspace sum includes the set union of its arguments. (Contributed by NM, 12-Jan-2012.) (New usage is discouraged.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  B  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  u.  Y )  C_  ( X  .+  Y ) )
 
Theoremelpadd0 30291 Member of projective subspace sum with at least one empty set. (Contributed by NM, 29-Dec-2011.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( ( K  e.  B  /\  X  C_  A  /\  Y  C_  A )  /\  -.  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  ->  ( S  e.  ( X  .+  Y )  <->  ( S  e.  X  \/  S  e.  Y ) ) )
 
Theorempaddval0 30292 Projective subspace sum with at least one empty set. (Contributed by NM, 11-Jan-2012.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( ( K  e.  B  /\  X  C_  A  /\  Y  C_  A )  /\  -.  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  ->  ( X  .+  Y )  =  ( X  u.  Y ) )
 
Theorempadd01 30293 Projective subspace sum with an empty set. (Contributed by NM, 11-Jan-2012.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  B  /\  X  C_  A )  ->  ( X  .+  (/) )  =  X )
 
Theorempadd02 30294 Projective subspace sum with an empty set. (Contributed by NM, 11-Jan-2012.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  B  /\  X  C_  A )  ->  ( (/)  .+  X )  =  X )
 
Theorempaddcom 30295 Projective subspace sum commutes. (Contributed by NM, 3-Jan-2012.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  =  ( Y  .+  X ) )
 
Theorempaddssat 30296 A projective subspace sum is a set of atoms. (Contributed by NM, 3-Jan-2012.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  B  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  C_  A )
 
Theoremsspadd1 30297 A projective subspace sum is a superset of its first summand. (ssun1 3470 analog.) (Contributed by NM, 3-Jan-2012.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  B  /\  X  C_  A  /\  Y  C_  A )  ->  X  C_  ( X  .+  Y ) )
 
Theoremsspadd2 30298 A projective subspace sum is a superset of its second summand. (ssun2 3471 analog.) (Contributed by NM, 3-Jan-2012.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  B  /\  X  C_  A  /\  Y  C_  A )  ->  X  C_  ( Y  .+  X ) )
 
Theorempaddss1 30299 Subset law for projective subspace sum. (unss1 3476 analog.) (Contributed by NM, 7-Mar-2012.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  B  /\  Y  C_  A  /\  Z  C_  A )  ->  ( X  C_  Y  ->  ( X  .+  Z )  C_  ( Y  .+  Z ) ) )
 
Theorempaddss2 30300 Subset law for projective subspace sum. (unss2 3478 analog.) (Contributed by NM, 7-Mar-2012.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  B  /\  Y  C_  A  /\  Z  C_  A )  ->  ( X  C_  Y  ->  ( Z  .+  X )  C_  ( Z  .+  Y ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32447
  Copyright terms: Public domain < Previous  Next >