Home Metamath Proof ExplorerTheorem List (p. 289 of 309) < Previous  Next > Browser slow? Try the Unicode version.

 Color key: Metamath Proof Explorer (1-21328) Hilbert Space Explorer (21329-22851) Users' Mathboxes (22852-30843)

Theorem List for Metamath Proof Explorer - 28801-28900   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theorempcl0bN 28801 The projective subspace closure of the empty subspace. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.)

TheorempmaplubN 28802 The LUB of a projective map is the projective map's argument. (Contributed by NM, 13-Mar-2012.) (New usage is discouraged.)

TheoremsspmaplubN 28803 A set of atoms is a subset of the projective map of its LUB. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.)

Theorem2pmaplubN 28804 Double projective map of an LUB. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.)

TheorempaddunN 28805 The closure of the projective sum of two sets of atoms is the same as the closure of their union. (Closure is actually double polarity, which can be trivially inferred from this theorem using fveq2d 5381.) (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.)

Theorempoldmj1N 28806 DeMorgan's law for polarity of projective sum. (oldmj1 28100 analog.) (Contributed by NM, 7-Mar-2012.) (New usage is discouraged.)

Theorempmapj2N 28807 The projective map of the join of two lattice elements. (Contributed by NM, 14-Mar-2012.) (New usage is discouraged.)

TheorempmapocjN 28808 The projective map of the orthocomplement of the join of two lattice elements. (Contributed by NM, 14-Mar-2012.) (New usage is discouraged.)

TheorempolatN 28809 The polarity of the singleton of an atom (i.e. a point). (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.)

Theorem2polatN 28810 Double polarity of the singleton of an atom (i.e. a point). (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.)

TheorempnonsingN 28811 The intersection of a set of atoms and its polarity is empty. Definition of nonsingular in [Holland95] p. 214. (Contributed by NM, 29-Jan-2012.) (New usage is discouraged.)

SyntaxcpscN 28812 Extend class notation with set of all closed projective subspaces for a Hilbert lattice.

Definitiondf-psubclN 28813* Define set of all closed projective subspaces, which are those sets of atoms that equal their double polarity. Based on definition in [Holland95] p. 223. (Contributed by NM, 23-Jan-2012.)

TheorempsubclsetN 28814* The set of closed projective subspaces in a Hilbert lattice. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)

TheoremispsubclN 28815 The predicate "is a closed projective subspace". (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)

TheorempsubcliN 28816 Property of a closed projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)

Theorempsubcli2N 28817 Property of a closed projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)

TheorempsubclsubN 28818 A closed projective subspace is a projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)

TheorempsubclssatN 28819 A closed projective subspace is a set of atoms. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.)

TheorempmapidclN 28820 Projective map of the LUB of a closed subspace. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)

Theorem0psubclN 28821 The empty set is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.)

Theorem1psubclN 28822 The set of all atoms is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.)

TheorematpsubclN 28823 A point (singleton of an atom) is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.)

TheorempmapsubclN 28824 A projective map value is a closed projective subspace. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.)

Theoremispsubcl2N 28825* Alternate predicate for "is a closed projective subspace". Remark in [Holland95] p. 223. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.)

TheorempsubclinN 28826 The intersection of two closed subspaces is closed. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)

TheorempaddatclN 28827 The projective sum of a closed subspace and an atom is a closed projective subspace. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)

TheorempclfinclN 28828 The projective subspace closure of a finite set of atoms is a closed subspace. Compare the (non-closed) subspace version pclfinN 28778 and also pclcmpatN 28779. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.)

TheoremlinepsubclN 28829 A line is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.)

TheorempolsubclN 28830 A polarity is a closed projective subspace. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.)

Theorempoml4N 28831 Orthomodular law for projective lattices. Lemma 3.3(1) in [Holland95] p. 215. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.)

Theorempoml5N 28832 Orthomodular law for projective lattices. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.)

Theorempoml6N 28833 Orthomodular law for projective lattices. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)

Theoremosumcllem1N 28834 Lemma for osumclN 28845. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)

Theoremosumcllem2N 28835 Lemma for osumclN 28845. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)

Theoremosumcllem3N 28836 Lemma for osumclN 28845. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.)

Theoremosumcllem4N 28837 Lemma for osumclN 28845. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.)

Theoremosumcllem5N 28838 Lemma for osumclN 28845. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.)

Theoremosumcllem6N 28839 Lemma for osumclN 28845. Use atom exchange hlatexch1 28273 to swap and . (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.)

Theoremosumcllem7N 28840* Lemma for osumclN 28845. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.)

Theoremosumcllem8N 28841 Lemma for osumclN 28845. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.)

Theoremosumcllem9N 28842 Lemma for osumclN 28845. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.)

Theoremosumcllem10N 28843 Lemma for osumclN 28845. Contradict osumcllem9N 28842. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)

Theoremosumcllem11N 28844 Lemma for osumclN 28845. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)

TheoremosumclN 28845 Closure of orthogonal sum. If and are orthogonal closed projective subspaces, then their sum is closed. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)

TheorempmapojoinN 28846 For orthogonal elements, projective map of join equals projective sum. Compare pmapjoin 28730 where only one direction holds. (Contributed by NM, 11-Apr-2012.) (New usage is discouraged.)

TheorempexmidN 28847 Excluded middle law for closed projective subspaces, which can be shown to be equivalent to (and derivable from) the orthomodular law poml4N 28831. Lemma 3.3(2) in [Holland95] p. 215, which we prove as a special case of osumclN 28845. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)

Theorempexmidlem1N 28848 Lemma for pexmidN 28847. Holland's proof implicitly requires , which we prove here. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.)

Theorempexmidlem2N 28849 Lemma for pexmidN 28847. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.)

Theorempexmidlem3N 28850 Lemma for pexmidN 28847. Use atom exchange hlatexch1 28273 to swap and . (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.)

Theorempexmidlem4N 28851* Lemma for pexmidN 28847. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.)

Theorempexmidlem5N 28852 Lemma for pexmidN 28847. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.)

Theorempexmidlem6N 28853 Lemma for pexmidN 28847. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)

Theorempexmidlem7N 28854 Lemma for pexmidN 28847. Contradict pexmidlem6N 28853. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)

Theorempexmidlem8N 28855 Lemma for pexmidN 28847. The contradiction of pexmidlem6N 28853 and pexmidlem7N 28854 shows that there can be no atom that is not in , which is therefore the whole atom space. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)

TheorempexmidALTN 28856 Excluded middle law for closed projective subspaces, which is equivalent to (and derived from) the orthomodular law poml4N 28831. Lemma 3.3(2) in [Holland95] p. 215. In our proof, we use the variables , , , , in place of Hollands' l, m, P, Q, L respectively. TODO: should we make this obsolete? (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)

Theorempl42lem1N 28857 Lemma for pl42N 28861. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)

Theorempl42lem2N 28858 Lemma for pl42N 28861. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)

Theorempl42lem3N 28859 Lemma for pl42N 28861. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)

Theorempl42lem4N 28860 Lemma for pl42N 28861. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)

Theorempl42N 28861 Law holding in a Hilbert lattice that fails in orthomodular lattice L42 (Figure 7 in [MegPav2000] p. 2366). (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)

Syntaxclh 28862 Extend class notation with set of all co-atoms (lattice hyperplanes).

Syntaxclaut 28863 Extend class notation with set of all lattice automorphisms.

SyntaxcwpointsN 28864 Extend class notation with W points.

SyntaxcpautN 28865 Extend class notation with set of all projective automorphisms.

Definitiondf-lhyp 28866* Define the set of lattice hyperplanes, which are all lattice elements covered by 1 (i.e. all co-atoms). We call them "hyperplanes" instead of "co-atoms" in analogy with projective geometry hyperplanes. (Contributed by NM, 11-May-2012.)

Definitiondf-laut 28867* Define set of lattice autoisomorphisms. (Contributed by NM, 11-May-2012.)

Definitiondf-watsN 28868* Define W-atoms corresponding to an arbitrary "fiducial (i.e. reference) atom" . These are all atoms not in the polarity of , which is the hyperplane determined by . Definition of set W in [Crawley] p. 111. (Contributed by NM, 26-Jan-2012.)

Definitiondf-pautN 28869* Define set of all projective automorphisms. This is the intended definition of automorphism in [Crawley] p. 112. (Contributed by NM, 26-Jan-2012.)

TheoremwatfvalN 28870* The W atoms function. (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.)

TheoremwatvalN 28871 Value of the W atoms function. (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.)

TheoremiswatN 28872 The predicate "is a W atom" (corresponding to fiducial atom ). (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.)

Theoremlhpset 28873* The set of co-atoms (lattice hyperplanes). (Contributed by NM, 11-May-2012.)

Theoremislhp 28874 The predicate "is a co-atom (lattice hyperplane)." (Contributed by NM, 11-May-2012.)

Theoremislhp2 28875 The predicate "is a co-atom (lattice hyperplane)." (Contributed by NM, 18-May-2012.)

Theoremlhpbase 28876 A co-atom is a member of the lattice base set (i.e. a lattice element). (Contributed by NM, 18-May-2012.)

Theoremlhp1cvr 28877 The lattice unit covers a co-atom (lattice hyperplane). (Contributed by NM, 18-May-2012.)

Theoremlhplt 28878 An atom under a co-atom is strictly less than it. TODO: is this needed? (Contributed by NM, 1-Jun-2012.)

Theoremlhp2lt 28879 The join of two atoms under a co-atom is strictly less than it. (Contributed by NM, 8-Jul-2013.)

Theoremlhpexlt 28880* There exists an atom less than a co-atom. TODO: is this needed? (Contributed by NM, 1-Jun-2012.)

Theoremlhp0lt 28881 A co-atom is greater than zero. TODO: is this needed? (Contributed by NM, 1-Jun-2012.)

Theoremlhpn0 28882 A co-atom is nonzero. TODO: is this needed? (Contributed by NM, 26-Apr-2013.)

Theoremlhpexle 28883* There exists an atom under a co-atom. (Contributed by NM, 26-Apr-2013.)

Theoremlhpexnle 28884* There exists an atom not under a co-atom. (Contributed by NM, 12-Apr-2013.)

Theoremlhpexle1lem 28885* Lemma for lhpexle1 28886 and others that eliminates restrictions on . (Contributed by NM, 24-Jul-2013.)

Theoremlhpexle1 28886* There exists an atom under a co-atom different from any given element. (Contributed by NM, 24-Jul-2013.)

Theoremlhpexle2lem 28887* Lemma for lhpexle2 28888. (Contributed by NM, 19-Jun-2013.)

Theoremlhpexle2 28888* There exists atom under a co-atom different from any two other elements. (Contributed by NM, 24-Jul-2013.)

Theoremlhpexle3lem 28889* There exists atom under a co-atom different from any 3 other atoms. TODO: study if adant*,simp* usage can be improved. (Contributed by NM, 9-Jul-2013.)

Theoremlhpexle3 28890* There exists atom under a co-atom different from any three other elements. (Contributed by NM, 24-Jul-2013.)

Theoremlhpex2leN 28891* There exist at least two different atoms under a co-atom. This allows us to create a line under the co-atom. TODO: is this needed? (Contributed by NM, 1-Jun-2012.) (New usage is discouraged.)

Theoremlhpoc 28892 The orthocomplement of a co-atom (lattice hyperplane) is an atom. (Contributed by NM, 18-May-2012.)

Theoremlhpoc2N 28893 The orthocomplement of an atom is a co-atom (lattice hyperplane). (Contributed by NM, 20-Jun-2012.) (New usage is discouraged.)

Theoremlhpocnle 28894 The orthocomplement of a co-atom is not under it. (Contributed by NM, 22-May-2012.)

Theoremlhpocat 28895 The orthocomplement of a co-atom is an atom. (Contributed by NM, 9-Feb-2013.)

Theoremlhpocnel 28896 The orthocomplement of a co-atom is an atom not under it. Provides a convenient construction when we need the existence of any object with this property. (Contributed by NM, 25-May-2012.)

Theoremlhpocnel2 28897 The orthocomplement of a co-atom is an atom not under it. Provides a convenient construction when we need the existence of any object with this property. (Contributed by NM, 20-Feb-2014.)

Theoremlhpjat1 28898 The join of a co-atom (hyperplane) and an atom not under it is the lattice unit. (Contributed by NM, 18-May-2012.)

Theoremlhpjat2 28899 The join of a co-atom (hyperplane) and an atom not under it is the lattice unit. (Contributed by NM, 4-Jun-2012.)

Theoremlhpj1 28900 The join of a co-atom (hyperplane) and an element not under it is the lattice unit. (Contributed by NM, 7-Dec-2012.)

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30843
 Copyright terms: Public domain < Previous  Next >