HomeHome Metamath Proof Explorer
Theorem List (p. 17 of 393)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-26397)
  Hilbert Space Explorer  Hilbert Space Explorer
(26398-27920)
  Users' Mathboxes  Users' Mathboxes
(27921-39291)
 

Theorem List for Metamath Proof Explorer - 1601-1700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremmerco1lem7 1601 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1592. (Contributed by Anthony Hart, 17-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ph  ->  (
 ( ( ps  ->  ch )  ->  ps )  ->  ps ) )
 
Theoremretbwax3 1602 tbw-ax3 1581 rederived from merco1 1592. (Contributed by Anthony Hart, 17-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ( ( ph  ->  ps )  ->  ph )  -> 
 ph )
 
Theoremmerco1lem8 1603 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1592. (Contributed by Anthony Hart, 17-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ph  ->  (
 ( ps  ->  ( ps  ->  ch ) )  ->  ( ps  ->  ch )
 ) )
 
Theoremmerco1lem9 1604 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1592. (Contributed by Anthony Hart, 18-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ( ph  ->  (
 ph  ->  ps ) )  ->  ( ph  ->  ps )
 )
 
Theoremmerco1lem10 1605 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1592. (Contributed by Anthony Hart, 18-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ( ( ( ( ph  ->  ps )  ->  ch )  ->  ( ta  ->  ch ) )  ->  ph )  ->  ( th  -> 
 ph ) )
 
Theoremmerco1lem11 1606 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1592. (Contributed by Anthony Hart, 18-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ( ph  ->  ps )  ->  ( (
 ( ch  ->  ( ph  ->  ta ) )  -> F.  )  ->  ps )
 )
 
Theoremmerco1lem12 1607 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1592. (Contributed by Anthony Hart, 18-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ( ph  ->  ps )  ->  ( (
 ( ch  ->  ( ph  ->  ta ) )  ->  ph )  ->  ps )
 )
 
Theoremmerco1lem13 1608 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1592. (Contributed by Anthony Hart, 18-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ( ( (
 ph  ->  ps )  ->  ( ch  ->  ps ) )  ->  ta )  ->  ( ph  ->  ta ) )
 
Theoremmerco1lem14 1609 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1592. (Contributed by Anthony Hart, 18-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ( ( (
 ph  ->  ps )  ->  ps )  ->  ch )  ->  ( ph  ->  ch ) )
 
Theoremmerco1lem15 1610 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1592. (Contributed by Anthony Hart, 18-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ( ph  ->  ps )  ->  ( ph  ->  ( ch  ->  ps )
 ) )
 
Theoremmerco1lem16 1611 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1592. (Contributed by Anthony Hart, 18-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ( ( ph  ->  ( ps  ->  ch )
 )  ->  ta )  ->  ( ( ph  ->  ch )  ->  ta )
 )
 
Theoremmerco1lem17 1612 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1592. (Contributed by Anthony Hart, 18-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ( ( ( ( ph  ->  ps )  -> 
 ph )  ->  ch )  ->  ta )  ->  (
 ( ph  ->  ch )  ->  ta ) )
 
Theoremmerco1lem18 1613 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1592. (Contributed by Anthony Hart, 18-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ( ph  ->  ( ps  ->  ch )
 )  ->  ( ( ps  ->  ph )  ->  ( ps  ->  ch ) ) )
 
Theoremretbwax1 1614 tbw-ax1 1579 rederived from merco1 1592.

This theorem, along with retbwax2 1595, retbwax3 1602, and retbwax4 1594, shows that merco1 1592 with ax-mp 5 can be used as a complete axiomatization of propositional calculus. (Contributed by Anthony Hart, 18-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)

 |-  ( ( ph  ->  ps )  ->  ( ( ps  ->  ch )  ->  ( ph  ->  ch ) ) )
 
1.3.8  Derive the Tarski-Bernays-Wajsberg axioms from Meredith's Second CO Axiom
 
Theoremmerco2 1615 A single axiom for propositional calculus offered by Meredith.

This axiom has 19 symbols, sans auxiliaries. See notes in merco1 1592. (Contributed by Anthony Hart, 7-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)

 |-  ( ( ( ph  ->  ps )  ->  (
 ( F.  ->  ch )  ->  th ) )  ->  ( ( th  ->  ph )  ->  ( ta  ->  ( et  ->  ph )
 ) ) )
 
Theoremmercolem1 1616 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco2 1615. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ( ( ph  ->  ps )  ->  ch )  ->  ( ps  ->  ( th  ->  ch ) ) )
 
Theoremmercolem2 1617 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco2 1615. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ( ( ph  ->  ps )  ->  ph )  ->  ( ch  ->  ( th  ->  ph ) ) )
 
Theoremmercolem3 1618 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco2 1615. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ( ps  ->  ch )  ->  ( ps  ->  ( ph  ->  ch )
 ) )
 
Theoremmercolem4 1619 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco2 1615. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ( th  ->  ( et  ->  ph ) ) 
 ->  ( ( ( th  ->  ch )  ->  ph )  ->  ( ta  ->  ( et  ->  ph ) ) ) )
 
Theoremmercolem5 1620 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco2 1615. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( th  ->  (
 ( th  ->  ph )  ->  ( ta  ->  ( ch  ->  ph ) ) ) )
 
Theoremmercolem6 1621 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco2 1615. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ( ph  ->  ( ps  ->  ( ph  ->  ch ) ) ) 
 ->  ( ps  ->  ( ph  ->  ch ) ) )
 
Theoremmercolem7 1622 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco2 1615. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ( ph  ->  ps )  ->  ( (
 ( ph  ->  ch )  ->  ( th  ->  ps )
 )  ->  ( th  ->  ps ) ) )
 
Theoremmercolem8 1623 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco2 1615. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ( ph  ->  ps )  ->  ( ( ps  ->  ( ph  ->  ch ) )  ->  ( ta  ->  ( th  ->  (
 ph  ->  ch ) ) ) ) )
 
Theoremre1tbw1 1624 tbw-ax1 1579 rederived from merco2 1615. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ( ph  ->  ps )  ->  ( ( ps  ->  ch )  ->  ( ph  ->  ch ) ) )
 
Theoremre1tbw2 1625 tbw-ax2 1580 rederived from merco2 1615. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ph  ->  ( ps  ->  ph ) )
 
Theoremre1tbw3 1626 tbw-ax3 1581 rederived from merco2 1615. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ( ( ph  ->  ps )  ->  ph )  -> 
 ph )
 
Theoremre1tbw4 1627 tbw-ax4 1582 rederived from merco2 1615.

This theorem, along with re1tbw1 1624, re1tbw2 1625, and re1tbw3 1626, shows that merco2 1615, along with ax-mp 5, can be used as a complete axiomatization of propositional calculus. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)

 |-  ( F.  ->  ph )
 
1.3.9  Derive the Lukasiewicz axioms from the Russell-Bernays Axioms
 
Theoremrb-bijust 1628 Justification for rb-imdf 1629. (Contributed by Anthony Hart, 17-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ( ph  <->  ps )  <->  -.  ( -.  ( -.  ph  \/  ps )  \/  -.  ( -.  ps  \/  ph ) ) )
 
Theoremrb-imdf 1629 The definition of implication, in terms of  \/ and  -.. (Contributed by Anthony Hart, 17-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |- 
 -.  ( -.  ( -.  ( ph  ->  ps )  \/  ( -.  ph  \/  ps ) )  \/  -.  ( -.  ( -.  ph  \/  ps )  \/  ( ph  ->  ps ) ) )
 
Theoremanmp 1630 Modus ponens for  \/  -. axiom systems. (Contributed by Anthony Hart, 12-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ph   &    |-  ( -.  ph  \/  ps )   =>    |- 
 ps
 
Theoremrb-ax1 1631 The first of four axioms in the Russell-Bernays axiom system. (Contributed by Anthony Hart, 13-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( -.  ( -. 
 ps  \/  ch )  \/  ( -.  ( ph  \/  ps )  \/  ( ph  \/  ch ) ) )
 
Theoremrb-ax2 1632 The second of four axioms in the Russell-Bernays axiom system. (Contributed by Anthony Hart, 13-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( -.  ( ph  \/  ps )  \/  ( ps  \/  ph ) )
 
Theoremrb-ax3 1633 The third of four axioms in the Russell-Bernays axiom system. (Contributed by Anthony Hart, 13-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( -.  ph  \/  ( ps  \/  ph )
 )
 
Theoremrb-ax4 1634 The fourth of four axioms in the Russell-Bernays axiom system. (Contributed by Anthony Hart, 13-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( -.  ( ph  \/  ph )  \/  ph )
 
Theoremrbsyl 1635 Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 18-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( -.  ps  \/  ch )   &    |-  ( ph  \/  ps )   =>    |-  ( ph  \/  ch )
 
Theoremrblem1 1636 Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 18-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( -.  ph  \/  ps )   &    |-  ( -.  ch  \/  th )   =>    |-  ( -.  ( ph  \/  ch )  \/  ( ps  \/  th ) )
 
Theoremrblem2 1637 Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 18-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( -.  ( ch 
 \/  ph )  \/  ( ch  \/  ( ph  \/  ps ) ) )
 
Theoremrblem3 1638 Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 18-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( -.  ( ch 
 \/  ph )  \/  (
 ( ch  \/  ps )  \/  ph ) )
 
Theoremrblem4 1639 Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 18-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( -.  ph  \/  th )   &    |-  ( -.  ps  \/  ta )   &    |-  ( -.  ch  \/  et )   =>    |-  ( -.  ( (
 ph  \/  ps )  \/  ch )  \/  (
 ( et  \/  ta )  \/  th ) )
 
Theoremrblem5 1640 Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 19-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( -.  ( -. 
 -.  ph  \/  ps )  \/  ( -.  -.  ps  \/  ph ) )
 
Theoremrblem6 1641 Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 19-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |- 
 -.  ( -.  ( -.  ph  \/  ps )  \/  -.  ( -.  ps  \/  ph ) )   =>    |-  ( -.  ph  \/  ps )
 
Theoremrblem7 1642 Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 19-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |- 
 -.  ( -.  ( -.  ph  \/  ps )  \/  -.  ( -.  ps  \/  ph ) )   =>    |-  ( -.  ps  \/  ph )
 
Theoremre1axmp 1643 ax-mp 5 derived from Russell-Bernays'. (Contributed by Anthony Hart, 19-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ph   &    |-  ( ph  ->  ps )   =>    |-  ps
 
Theoremre2luk1 1644 luk-1 1534 derived from Russell-Bernays'. (Contributed by Anthony Hart, 19-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ( ph  ->  ps )  ->  ( ( ps  ->  ch )  ->  ( ph  ->  ch ) ) )
 
Theoremre2luk2 1645 luk-2 1535 derived from Russell-Bernays'. (Contributed by Anthony Hart, 19-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ( -.  ph  -> 
 ph )  ->  ph )
 
Theoremre2luk3 1646 luk-3 1536 derived from Russell-Bernays'.

This theorem, along with re1axmp 1643, re2luk1 1644, and re2luk2 1645 shows that rb-ax1 1631, rb-ax2 1632, rb-ax3 1633, and rb-ax4 1634, along with anmp 1630, can be used as a complete axiomatization of propositional calculus. (Contributed by Anthony Hart, 19-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)

 |-  ( ph  ->  ( -.  ph  ->  ps )
 )
 
1.3.10  Stoic logic non-modal portion (Chrysippus of Soli)

The Greek Stoics developed a system of logic called Stoic logic. The Stoic Chrysippus, in particular, was often considered one of the greatest logicians of antiquity. Stoic logic is different from Aristotle's system, since it focuses on propositional logic, though later thinkers did combine the systems of the Stoics with Aristotle. Jan Lukasiewicz reports, "For anybody familiar with mathematical logic it is self-evident that the Stoic dialectic is the ancient form of modern propositional logic" ( On the history of the logic of proposition by Jan Lukasiewicz (1934), translated in: Selected Works - Edited by Ludwik Borkowski - Amsterdam, North-Holland, 1970 pp. 197-217, referenced in "History of Logic" https://www.historyoflogic.com/logic-stoics.htm).

In this section we show that the propositional logic system we use (which is non-modal) is at least as strong as the non-modal portion of Stoic logic. We show this by showing that our system assumes or proves all of key features of Stoic logic's non-modal portion (specifically the Stoic logic indemonstrables, themata, and principles).

"In terms of contemporary logic, Stoic syllogistic is best understood as a substructural backwards-working Gentzen-style natural-deduction system that consists of five kinds of axiomatic arguments (the indemonstrables) and four inference rules, called themata. An argument is a syllogism precisely if it either is an indemonstrable or can be reduced to one by means of the themata (Diogenes Laertius (D. L. 7.78))." (Ancient Logic, Stanford Encyclopedia of Philosophy https://plato.stanford.edu/entries/logic-ancient/). There are also a few "principles" that support logical reasoning, discussed below. For more information, see "Stoic Logic" by Susanne Bobzien, especially [Bobzien] p. 110-120, especially for a discussion about the themata (including how they were reconstructed and how they were used). There are differences in the systems we can only partly represent, for example, in Stoic logic "truth and falsehood are temporal properties of assertibles... They can belong to an assertible at one time but not at another" ([Bobzien] p. 87). Stoic logic also included various kinds of modalities, which we do not include here since our basic propositional logic does not include modalities.

A key part of the Stoic logic system is a set of five "indemonstrables" assigned to Chrysippus of Soli by Diogenes Laertius, though in general it is difficult to assign specific ideas to specific thinkers. The indemonstrables are described in, for example, [Lopez-Astorga] p. 11 , [Sanford] p. 39, and [Hitchcock] p. 5. These indemonstrables are modus ponendo ponens (modus ponens) ax-mp 5, modus tollendo tollens (modus tollens) mto 179, modus ponendo tollens I mptnan 1647, modus ponendo tollens II mptxor 1648, and modus tollendo ponens (exclusive-or version) mtpxor 1650. The first is an axiom, the second is already proved; in this section we prove the other three. Note that modus tollendo ponens mtpxor 1650 originally used exclusive-or, but over time the name modus tollendo ponens has increasingly referred to an inclusive-or variation, which is proved in mtpor 1649.

After we prove the indemonstratables, we then prove all the Stoic logic themata (the inference rules of Stoic logic; "thema" is singular). This is straightforward for thema 1 (stoic1a 1651 and stoic1b 1653) and thema 3 (stoic3 1656). However, while Stoic logic was once a leading logic system, most direct information about Stoic logic has since been lost, including the exact texts of thema 2 and thema 4. There are, however, enough references and specific examples to support reconstruction. Themata 2 and 4 have been reconstructed; see statements T2 and T4 in [Bobzien] p. 110-120 and our proofs of them in stoic2a 1654, stoic2b 1655, stoic4a 1657, and stoic4b 1658.

Stoic logic also had a set of principles involving assertibles. Statements in [Bobzien] p. 99 express the known principles. The following paragraphs discuss these principles and our proofs of them.

"A principle of double negation, expressed by saying that a double-negation (Not: not: p) is equivalent to the assertible that is doubly negated (p) (DL VII 69)." In other words,  ( ph  <->  -. 
-.  ph ) as proven in notnot 292.

"The principle that all conditionals that are formed by using the same assertible twice (like 'If p, p') are true (Cic. Acad. II 98)." In other words,  ( ph  ->  ph ) as proven in id 23.

"The principle that all disjunctions formed by a contradiction (like 'Either p or not: p') are true (S. E. M VIII 282)" Remember that in Stoic logic, 'or' means 'exclusive or'. In other words,  ( ph  \/_  -.  ph ) as proven in xorexmid 1419.

[Bobzien] p. 99 also suggests that Stoic logic may have dealt with commutativity (see xorcom 1403 and ancom 451) and the principle of contraposition (ax-3 8) (pointing to DL VII 194).

In short, the non-modal propositional logic system we use is at least as strong as the non-modal portion of Stoic logic.

For more about Aristotle's system, see barbara 2368 and related theorems.

 
Theoremmptnan 1647 Modus ponendo tollens 1, one of the "indemonstrables" in Stoic logic. See rule 1 on [Lopez-Astorga] p. 12 , rule 1 on [Sanford] p. 40, and rule A3 in [Hitchcock] p. 5. Sanford describes this rule second (after mptxor 1648) as a "safer, and these days much more common" version of modus ponendo tollens because it avoids confusion between inclusive-or and exclusive-or. (Contributed by David A. Wheeler, 3-Jul-2016.)
 |-  ph   &    |- 
 -.  ( ph  /\  ps )   =>    |- 
 -.  ps
 
Theoremmptxor 1648 Modus ponendo tollens 2, one of the "indemonstrables" in Stoic logic. Note that this uses exclusive-or  \/_. See rule 2 on [Lopez-Astorga] p. 12 , rule 4 on [Sanford] p. 39 and rule A4 in [Hitchcock] p. 5 . (Contributed by David A. Wheeler, 3-Jul-2016.) (Proof shortened by Wolf Lammen, 12-Nov-2017.) (Proof shortened by BJ, 19-Apr-2019.)
 |-  ph   &    |-  ( ph  \/_  ps )   =>    |- 
 -.  ps
 
Theoremmtpor 1649 Modus tollendo ponens (inclusive-or version), aka disjunctive syllogism. This is similar to mtpxor 1650, one of the five original "indemonstrables" in Stoic logic. However, in Stoic logic this rule used exclusive-or, while the name modus tollendo ponens often refers to a variant of the rule that uses inclusive-or instead. The rule says, "if  ph is not true, and  ph or  ps (or both) are true, then  ps must be true." An alternative phrasing is, "Once you eliminate the impossible, whatever remains, no matter how improbable, must be the truth." -- Sherlock Holmes (Sir Arthur Conan Doyle, 1890: The Sign of the Four, ch. 6). (Contributed by David A. Wheeler, 3-Jul-2016.) (Proof shortened by Wolf Lammen, 11-Nov-2017.)
 |- 
 -.  ph   &    |-  ( ph  \/  ps )   =>    |- 
 ps
 
Theoremmtpxor 1650 Modus tollendo ponens (original exclusive-or version), aka disjunctive syllogism, similar to mtpor 1649, one of the five "indemonstrables" in Stoic logic. The rule says, "if  ph is not true, and either  ph or  ps (exclusively) are true, then  ps must be true." Today the name "modus tollendo ponens" often refers to a variant, the inclusive-or version as defined in mtpor 1649. See rule 3 on [Lopez-Astorga] p. 12 (note that the "or" is the same as mptxor 1648, that is, it is exclusive-or df-xor 1401), rule 3 of [Sanford] p. 39 (where it is not as clearly stated which kind of "or" is used but it appears to be in the same sense as mptxor 1648), and rule A5 in [Hitchcock] p. 5 (exclusive-or is expressly used). (Contributed by David A. Wheeler, 4-Jul-2016.) (Proof shortened by Wolf Lammen, 11-Nov-2017.) (Proof shortened by BJ, 19-Apr-2019.)
 |- 
 -.  ph   &    |-  ( ph  \/_  ps )   =>    |- 
 ps
 
Theoremstoic1a 1651 Stoic logic Thema 1 (part a).

The first thema of the four Stoic logic themata, in its basic form, was:

"When from two (assertibles) a third follows, then from either of them together with the contradictory of the conclusion the contradictory of the other follows." (Apuleius Int. 209.9-14), see [Bobzien] p. 117 and https://plato.stanford.edu/entries/logic-ancient/

We will represent thema 1 as two very similar rules stoic1a 1651 and stoic1b 1653 to represent each side. (Contributed by David A. Wheeler, 16-Feb-2019.) (Proof shortened by Wolf Lammen, 21-May-2020.)

 |-  ( ( ph  /\  ps )  ->  th )   =>    |-  ( ( ph  /\  -.  th )  ->  -.  ps )
 
Theoremstoic1aOLD 1652 Obsolete proof of stoic1a 1651 as of 20-May-2020. (Contributed by David A. Wheeler, 16-Feb-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ( ph  /\  ps )  ->  th )   =>    |-  ( ( ph  /\  -.  th )  ->  -.  ps )
 
Theoremstoic1b 1653 Stoic logic Thema 1 (part b). The other part of thema 1 of Stoic logic; see stoic1a 1651. (Contributed by David A. Wheeler, 16-Feb-2019.)
 |-  ( ( ph  /\  ps )  ->  th )   =>    |-  ( ( ps  /\  -. 
 th )  ->  -.  ph )
 
Theoremstoic2a 1654 Stoic logic Thema 2 version a. Statement T2 of [Bobzien] p. 117 shows a reconstructed version of Stoic logic thema 2 as follows: "When from two assertibles a third follows, and from the third and one (or both) of the two another follows, then this other follows from the first two." Bobzien uses constructs such as  ph ,  ps |-  ch; in Metamath we will represent that construct as  ph  /\  ps  ->  ch. This version a is without the phrase "or both"; see stoic2b 1655 for the version with the phrase "or both". We already have this rule as syldan 472, so here we show the equivalence and discourage its use. (New usage is discouraged.) (Contributed by David A. Wheeler, 17-Feb-2019.)
 |-  ( ( ph  /\  ps )  ->  ch )   &    |-  ( ( ph  /\ 
 ch )  ->  th )   =>    |-  (
 ( ph  /\  ps )  ->  th )
 
Theoremstoic2b 1655 Stoic logic Thema 2 version b. See stoic2a 1654. Version b is with the phrase "or both". We already have this rule as mpd3an3 1361, so here we prove the equivalence and discourage its use. (New usage is discouraged.) (Contributed by David A. Wheeler, 17-Feb-2019.)
 |-  ( ( ph  /\  ps )  ->  ch )   &    |-  ( ( ph  /\ 
 ps  /\  ch )  ->  th )   =>    |-  ( ( ph  /\  ps )  ->  th )
 
Theoremstoic3 1656 Stoic logic Thema 3. Statement T3 of [Bobzien] p. 116-117 discusses Stoic logic Thema 3. "When from two (assemblies) a third follows, and from the one that follows (i.e., the third) together with another, external assumption, another follows, then other follows from the first two and the externally co-assumed one. (Simp. Cael. 237.2-4)" (Contributed by David A. Wheeler, 17-Feb-2019.)
 |-  ( ( ph  /\  ps )  ->  ch )   &    |-  ( ( ch 
 /\  th )  ->  ta )   =>    |-  (
 ( ph  /\  ps  /\  th )  ->  ta )
 
Theoremstoic4a 1657 Stoic logic Thema 4 version a. Statement T4 of [Bobzien] p. 117 shows a reconstructed version of Stoic logic Thema 4: "When from two assertibles a third follows, and from the third and one (or both) of the two and one (or more) external assertible(s) another follows, then this other follows from the first two and the external(s)."

We use  th to represent the "external" assertibles. This is version a, which is without the phrase "or both"; see stoic4b 1658 for the version with the phrase "or both". (Contributed by David A. Wheeler, 17-Feb-2019.)

 |-  ( ( ph  /\  ps )  ->  ch )   &    |-  ( ( ch 
 /\  ph  /\  th )  ->  ta )   =>    |-  ( ( ph  /\  ps  /\ 
 th )  ->  ta )
 
Theoremstoic4b 1658 Stoic logic Thema 4 version b. This is version b, which is with the phrase "or both". See stoic4a 1657 for more information. (Contributed by David A. Wheeler, 17-Feb-2019.)
 |-  ( ( ph  /\  ps )  ->  ch )   &    |-  ( ( ( ch  /\  ph  /\  ps )  /\  th )  ->  ta )   =>    |-  ( ( ph  /\  ps  /\ 
 th )  ->  ta )
 
1.4  Predicate calculus with equality: Tarski's system S2 (1 rule, 6 schemes)

Here we extend the language of wffs with predicate calculus, which allows us to talk about individual objects in a domain of discussion (which for us will be the universe of all sets, so we call them "setvar variables") and make true/false statements about predicates, which are relationships between objects, such as whether or not two objects are equal. In addition, we introduce universal quantification ("for all", e.g. ax-4 1678) in order to make statements about whether a wff holds for every object in the domain of discussion. Later we introduce existential quantification ("there exists", df-ex 1660) which is defined in terms of universal quantification.

Our axioms are really axiom schemes, and our wff and setvar variables are metavariables ranging over expressions in an underlying "object language." This is explained here: mmset.html#axiomnote.

Our axiom system starts with the predicate calculus axiom schemes system S2 of Tarski defined in his 1965 paper, "A Simplified Formalization of Predicate Logic with Identity" [Tarski]. System S2 is defined in the last paragraph on p. 77, and repeated on p. 81 of [KalishMontague]. We do not include scheme B5 (our sp 1912) of system S2 since [KalishMontague] shows it to be logically redundant (Lemma 9, p. 87, which we prove as theorem spw 1859 below).

Theorem spw 1859 can be used to prove any instance of sp 1912 having mutually distinct setvar variables and no wff metavariables. However, it seems that sp 1912 in its general form cannot be derived from only Tarski's schemes. We do not include B5 i.e. sp 1912 as part of what we call "Tarski's system" because we want it to be the smallest set of axioms that is logically complete with no redundancies. We later prove sp 1912 as theorem axc5 32164 using the auxiliary axioms that make our system metalogically complete.

Our version of Tarski's system S2 consists of propositional calculus (ax-mp 5, ax-1 6, ax-2 7, ax-3 8) plus ax-gen 1665, ax-4 1678, ax-5 1751, ax-6 1797, ax-7 1841, ax-8 1872, and ax-9 1874. The last three are equality axioms that represent three sub-schemes of Tarski's scheme B8. Due to its side-condition ("where 
ph is an atomic formula and  ps is obtained by replacing an occurrence of the variable  x by the variable 
y"), we cannot represent his B8 directly without greatly complicating our scheme language, but the simpler schemes ax-7 1841, ax-8 1872, and ax-9 1874 are sufficient for set theory and much easier to work with.

Tarski's system is exactly equivalent to the traditional axiom system in most logic textbooks but has the advantage of being easy to manipulate with a computer program, and its simpler metalogic (with no built-in notions of "free variable" and "proper substitution") is arguably easier for a non-logician human to follow step by step in a proof (where "follow" means being able to identify the substitutions that were made, without necessarily a higher-level understanding). In particular, it is logically complete in that it can derive all possible object-language theorems of predicate calculus with equality, i.e. the same theorems as the traditional system can derive.

However, for efficiency (and indeed a key feature that makes Metamath successful), our system is designed to derive reusable theorem schemes (rather than object-language theorems) from other schemes. From this "metalogical" point of view, Tarski's S2 is not complete. For example, we cannot derive scheme sp 1912, even though (using spw 1859) we can derive all instances of it that don't involve wff metavariables or bundled set metavariables. (Two set metavariables are "bundled" if they can be substituted with the same set metavariable i.e. do not have a $d distinct variable proviso.) Later we will introduce auxiliary axiom schemes ax-10 1889, ax-11 1894, ax-12 1907, and ax-13 2055 that are metatheorems of Tarski's system (i.e. are logically redundant) but which give our system the property of "metalogical completeness," allowing us to prove directly (instead of, say, by induction on formula length) all possible schemes that can be expressed in our language.

 
1.4.1  Universal quantifier (continued); define "exists" and "not free"

The universal quantifier was introduced above in wal 1435 for use by df-tru 1440. See the comments in that section. In this section, we continue with the first "real" use of it.

 
Syntaxwex 1659 Extend wff definition to include the existential quantifier ("there exists").
 wff  E. x ph
 
Definitiondf-ex 1660 Define existential quantification.  E. x ph means "there exists at least one set  x such that  ph is true." Definition of [Margaris] p. 49. (Contributed by NM, 10-Jan-1993.)
 |-  ( E. x ph  <->  -.  A. x  -.  ph )
 
Theoremalnex 1661 Theorem 19.7 of [Margaris] p. 89. (Contributed by NM, 12-Mar-1993.)
 |-  ( A. x  -.  ph  <->  -. 
 E. x ph )
 
Theoremeximal 1662 A utility theorem. An interesting case is when the same formula is substituted for both  ph and  ps, since then both implications express a type of non-freeness. See also alimex 1699. (Contributed by BJ, 12-May-2019.)
 |-  ( ( E. x ph 
 ->  ps )  <->  ( -.  ps  ->  A. x  -.  ph ) )
 
Syntaxwnf 1663 Extend wff definition to include the not-free predicate.
 wff  F/ x ph
 
Definitiondf-nf 1664 Define the not-free predicate for wffs. This is read " x is not free in  ph". Not-free means that the value of  x cannot affect the value of  ph, e.g., any occurrence of  x in  ph is effectively bound by a "for all" or something that expands to one (such as "there exists"). In particular, substitution for a variable not free in a wff does not affect its value (sbf 2175). An example of where this is used is stdpc5 1965. See nf2 2018 for an alternative definition which does not involve nested quantifiers on the same variable.

Not-free is a commonly used constraint, so it is useful to have a notation for it. Surprisingly, there is no common formal notation for it, so here we devise one. Our definition lets us work with the not-free notion within the logic itself rather than as a metalogical side condition.

To be precise, our definition really means "effectively not free," because it is slightly less restrictive than the usual textbook definition for not-free (which only considers syntactic freedom). For example,  x is effectively not free in the bare expression  x  =  x (see nfequid 1844), even though  x would be considered free in the usual textbook definition, because the value of  x in the expression  x  =  x cannot affect the truth of the expression (and thus substitution will not change the result).

This predicate only applies to wffs. See df-nfc 2579 for a not-free predicate for class variables. (Contributed by Mario Carneiro, 11-Aug-2016.)

 |-  ( F/ x ph  <->  A. x ( ph  ->  A. x ph ) )
 
1.4.2  Rule scheme ax-gen (Generalization)
 
Axiomax-gen 1665 Rule of Generalization. The postulated inference rule of predicate calculus. See e.g. Rule 2 of [Hamilton] p. 74. This rule says that if something is unconditionally true, then it is true for all values of a variable. For example, if we have proved  x  =  x, we can conclude  A. x x  =  x or even  A. y
x  =  x. Theorem allt 30837 shows the special case  A. x T.. Theorem spi 1917 shows we can go the other way also: in other words we can add or remove universal quantifiers from the beginning of any theorem as required. (Contributed by NM, 3-Jan-1993.)
 |-  ph   =>    |- 
 A. x ph
 
Theoremgen2 1666 Generalization applied twice. (Contributed by NM, 30-Apr-1998.)
 |-  ph   =>    |- 
 A. x A. y ph
 
Theoremmpg 1667 Modus ponens combined with generalization. (Contributed by NM, 24-May-1994.)
 |-  ( A. x ph  ->  ps )   &    |-  ph   =>    |- 
 ps
 
Theoremmpgbi 1668 Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.)
 |-  ( A. x ph  <->  ps )   &    |-  ph   =>    |- 
 ps
 
Theoremmpgbir 1669 Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.)
 |-  ( ph  <->  A. x ps )   &    |-  ps   =>    |-  ph
 
Theoremnfi 1670 Deduce that  x is not free in  ph from the definition. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |-  ( ph  ->  A. x ph )   =>    |- 
 F/ x ph
 
Theoremhbth 1671 No variable is (effectively) free in a theorem.

This and later "hypothesis-building" lemmas, with labels starting "hb...", allow us to construct proofs of formulas of the form  |-  ( ph  ->  A. x ph ) from smaller formulas of this form. These are useful for constructing hypotheses that state " x is (effectively) not free in  ph." (Contributed by NM, 11-May-1993.)

 |-  ph   =>    |-  ( ph  ->  A. x ph )
 
Theoremnfth 1672 No variable is (effectively) free in a theorem. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |-  ph   =>    |- 
 F/ x ph
 
Theoremnftru 1673 The true constant has no free variables. (This can also be proven in one step with nfv 1754, but this proof does not use ax-5 1751.) (Contributed by Mario Carneiro, 6-Oct-2016.)
 |- 
 F/ x T.
 
Theoremnex 1674 Generalization rule for negated wff. (Contributed by NM, 18-May-1994.)
 |- 
 -.  ph   =>    |- 
 -.  E. x ph
 
Theoremnfnth 1675 No variable is (effectively) free in a non-theorem. (Contributed by Mario Carneiro, 6-Dec-2016.)
 |- 
 -.  ph   =>    |- 
 F/ x ph
 
Theoremnffal 1676 The false constant has no free variables (see nftru 1673). (Contributed by BJ, 6-May-2019.)
 |- 
 F/ x F.
 
Theoremsptruw 1677 Version of sp 1912 when  ph is true. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 23-Apr-2017.)
 |-  ph   =>    |-  ( A. x ph  -> 
 ph )
 
1.4.3  Axiom scheme ax-4 (Quantified Implication)
 
Axiomax-4 1678 Axiom of Quantified Implication. Axiom C4 of [Monk2] p. 105 and Theorem 19.20 of [Margaris] p. 90. It is restated as alim 1679 for labeling consistency. It should be used only by alim 1679. (Contributed by NM, 21-May-2008.) (New usage is discouraged.)
 |-  ( A. x (
 ph  ->  ps )  ->  ( A. x ph  ->  A. x ps ) )
 
Theoremalim 1679 Restatement of Axiom ax-4 1678, for labeling consistency. It should be the only theorem using ax-4 1678. (Contributed by NM, 10-Jan-1993.)
 |-  ( A. x (
 ph  ->  ps )  ->  ( A. x ph  ->  A. x ps ) )
 
Theoremalimi 1680 Inference quantifying both antecedent and consequent. (Contributed by NM, 5-Jan-1993.)
 |-  ( ph  ->  ps )   =>    |-  ( A. x ph  ->  A. x ps )
 
Theorem2alimi 1681 Inference doubly quantifying both antecedent and consequent. (Contributed by NM, 3-Feb-2005.)
 |-  ( ph  ->  ps )   =>    |-  ( A. x A. y ph  ->  A. x A. y ps )
 
Theoremal2im 1682 Closed form of al2imi 1683. Version of ax-4 1678 for a nested implication. (Contributed by Alan Sare, 31-Dec-2011.)
 |-  ( A. x (
 ph  ->  ( ps  ->  ch ) )  ->  ( A. x ph  ->  ( A. x ps  ->  A. x ch ) ) )
 
Theoremal2imi 1683 Inference quantifying antecedent, nested antecedent, and consequent. (Contributed by NM, 10-Jan-1993.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( A. x ph 
 ->  ( A. x ps  ->  A. x ch )
 )
 
Theoremalanimi 1684 Variant of al2imi 1683 with conjunctive antecedent. (Contributed by Andrew Salmon, 8-Jun-2011.)
 |-  ( ( ph  /\  ps )  ->  ch )   =>    |-  ( ( A. x ph 
 /\  A. x ps )  ->  A. x ch )
 
Theoremalimdh 1685 Deduction form of Theorem 19.20 of [Margaris] p. 90, see alim 1679. (Contributed by NM, 4-Jan-2002.)
 |-  ( ph  ->  A. x ph )   &    |-  ( ph  ->  ( ps  ->  ch )
 )   =>    |-  ( ph  ->  ( A. x ps  ->  A. x ch ) )
 
Theoremalbi 1686 Theorem 19.15 of [Margaris] p. 90. (Contributed by NM, 24-Jan-1993.)
 |-  ( A. x (
 ph 
 <->  ps )  ->  ( A. x ph  <->  A. x ps )
 )
 
Theoremalbii 1687 Inference adding universal quantifier to both sides of an equivalence. (Contributed by NM, 7-Aug-1994.)
 |-  ( ph  <->  ps )   =>    |-  ( A. x ph  <->  A. x ps )
 
Theorem2albii 1688 Inference adding two universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.)
 |-  ( ph  <->  ps )   =>    |-  ( A. x A. y ph  <->  A. x A. y ps )
 
Theoremalrimih 1689 Inference form of Theorem 19.21 of [Margaris] p. 90. See 19.21 1962 and 19.21h 1964. (Contributed by NM, 9-Jan-1993.)
 |-  ( ph  ->  A. x ph )   &    |-  ( ph  ->  ps )   =>    |-  ( ph  ->  A. x ps )
 
Theoremhbxfrbi 1690 A utility lemma to transfer a bound-variable hypothesis builder into a definition. See hbxfreq 2551 for equality version. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
 |-  ( ph  <->  ps )   &    |-  ( ps  ->  A. x ps )   =>    |-  ( ph  ->  A. x ph )
 
Theoremnfbii 1691 Equality theorem for not-free. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |-  ( ph  <->  ps )   =>    |-  ( F/ x ph  <->  F/ x ps )
 
Theoremnfxfr 1692 A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |-  ( ph  <->  ps )   &    |-  F/ x ps   =>    |-  F/ x ph
 
Theoremnfxfrd 1693 A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 24-Sep-2016.)
 |-  ( ph  <->  ps )   &    |-  ( ch  ->  F/ x ps )   =>    |-  ( ch  ->  F/ x ph )
 
Theoremalex 1694 Theorem 19.6 of [Margaris] p. 89. (Contributed by NM, 12-Mar-1993.)
 |-  ( A. x ph  <->  -.  E. x  -.  ph )
 
Theoremexnal 1695 Theorem 19.14 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
 |-  ( E. x  -.  ph  <->  -. 
 A. x ph )
 
Theorem2nalexn 1696 Part of theorem *11.5 in [WhiteheadRussell] p. 164. (Contributed by Andrew Salmon, 24-May-2011.)
 |-  ( -.  A. x A. y ph  <->  E. x E. y  -.  ph )
 
Theorem2exnaln 1697 Theorem *11.22 in [WhiteheadRussell] p. 160. (Contributed by Andrew Salmon, 24-May-2011.)
 |-  ( E. x E. y ph  <->  -.  A. x A. y  -.  ph )
 
Theorem2nexaln 1698 Theorem *11.25 in [WhiteheadRussell] p. 160. (Contributed by Andrew Salmon, 24-May-2011.)
 |-  ( -.  E. x E. y ph  <->  A. x A. y  -.  ph )
 
Theoremalimex 1699 A utility theorem. An interesting case is when the same formula is substituted for both  ph and  ps, since then both implications express a type of non-freeness. See also eximal 1662. (Contributed by BJ, 12-May-2019.)
 |-  ( ( ph  ->  A. x ps )  <->  ( E. x  -.  ps  ->  -.  ph )
 )
 
Theoremaleximi 1700 A variant of al2imi 1683: instead of applying  A. x quantifiers to the final implication, replace them with  E. x. A shorter proof is possible using nfa1 1954, sps 1918 and eximd 1935, but it depends on more axioms. (Contributed by Wolf Lammen, 18-Aug-2019.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( A. x ph 
 ->  ( E. x ps  ->  E. x ch )
 )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39291
  Copyright terms: Public domain < Previous  Next >