MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirmir Structured version   Unicode version

Theorem mirmir 23908
Description: The point inversion function is an involution. Theorem 7.7 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019.)
Hypotheses
Ref Expression
mirval.p  |-  P  =  ( Base `  G
)
mirval.d  |-  .-  =  ( dist `  G )
mirval.i  |-  I  =  (Itv `  G )
mirval.l  |-  L  =  (LineG `  G )
mirval.s  |-  S  =  (pInvG `  G )
mirval.g  |-  ( ph  ->  G  e. TarskiG )
mirval.a  |-  ( ph  ->  A  e.  P )
mirfv.m  |-  M  =  ( S `  A
)
mirmir.b  |-  ( ph  ->  B  e.  P )
Assertion
Ref Expression
mirmir  |-  ( ph  ->  ( M `  ( M `  B )
)  =  B )

Proof of Theorem mirmir
StepHypRef Expression
1 mirval.p . . 3  |-  P  =  ( Base `  G
)
2 mirval.d . . 3  |-  .-  =  ( dist `  G )
3 mirval.i . . 3  |-  I  =  (Itv `  G )
4 mirval.l . . 3  |-  L  =  (LineG `  G )
5 mirval.s . . 3  |-  S  =  (pInvG `  G )
6 mirval.g . . 3  |-  ( ph  ->  G  e. TarskiG )
7 mirval.a . . 3  |-  ( ph  ->  A  e.  P )
8 mirfv.m . . 3  |-  M  =  ( S `  A
)
9 mirmir.b . . . 4  |-  ( ph  ->  B  e.  P )
101, 2, 3, 4, 5, 6, 7, 8, 9mircl 23907 . . 3  |-  ( ph  ->  ( M `  B
)  e.  P )
111, 2, 3, 4, 5, 6, 7, 8, 9mircgr 23903 . . . 4  |-  ( ph  ->  ( A  .-  ( M `  B )
)  =  ( A 
.-  B ) )
1211eqcomd 2449 . . 3  |-  ( ph  ->  ( A  .-  B
)  =  ( A 
.-  ( M `  B ) ) )
131, 2, 3, 4, 5, 6, 7, 8, 9mirbtwn 23904 . . . 4  |-  ( ph  ->  A  e.  ( ( M `  B ) I B ) )
141, 2, 3, 6, 10, 7, 9, 13tgbtwncom 23744 . . 3  |-  ( ph  ->  A  e.  ( B I ( M `  B ) ) )
151, 2, 3, 4, 5, 6, 7, 8, 10, 9, 12, 14ismir 23905 . 2  |-  ( ph  ->  B  =  ( M `
 ( M `  B ) ) )
1615eqcomd 2449 1  |-  ( ph  ->  ( M `  ( M `  B )
)  =  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1381    e. wcel 1802   ` cfv 5574  (class class class)co 6277   Basecbs 14504   distcds 14578  TarskiGcstrkg 23690  Itvcitv 23697  LineGclng 23698  pInvGcmir 23898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4544  ax-sep 4554  ax-nul 4562  ax-pr 4672
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-op 4017  df-uni 4231  df-iun 4313  df-br 4434  df-opab 4492  df-mpt 4493  df-id 4781  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-riota 6238  df-ov 6280  df-trkgc 23709  df-trkgb 23710  df-trkgcb 23711  df-trkg 23715  df-mir 23899
This theorem is referenced by:  mircom  23909  mirreu  23910  mireq  23911  mirf1o  23914  mirbtwnb  23917  miduniq2  23929  ragcom  23940  ragmir  23942  colperpexlem1  23969  colperpexlem2  23970  opphllem2  23985  opphllem3  23986  opphllem4  23987  opphllem6  23989  opphl  23990
  Copyright terms: Public domain W3C validator