MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem7 Structured version   Unicode version

Theorem minvecolem7 24306
Description: Lemma for minveco 24307. Since any two minimal points are distance zero away from each other, the minimal point is unique. (Contributed by Mario Carneiro, 9-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x  |-  X  =  ( BaseSet `  U )
minveco.m  |-  M  =  ( -v `  U
)
minveco.n  |-  N  =  ( normCV `  U )
minveco.y  |-  Y  =  ( BaseSet `  W )
minveco.u  |-  ( ph  ->  U  e.  CPreHil OLD )
minveco.w  |-  ( ph  ->  W  e.  ( (
SubSp `  U )  i^i 
CBan ) )
minveco.a  |-  ( ph  ->  A  e.  X )
minveco.d  |-  D  =  ( IndMet `  U )
minveco.j  |-  J  =  ( MetOpen `  D )
minveco.r  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
minveco.s  |-  S  =  sup ( R ,  RR ,  `'  <  )
Assertion
Ref Expression
minvecolem7  |-  ( ph  ->  E! x  e.  Y  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) )
Distinct variable groups:    x, y, J    x, M, y    x, N, y    ph, x, y   
x, R    x, S, y    x, A, y    x, D, y    x, U, y   
x, W, y    x, X    x, Y, y
Allowed substitution hints:    R( y)    X( y)

Proof of Theorem minvecolem7
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 minveco.x . . 3  |-  X  =  ( BaseSet `  U )
2 minveco.m . . 3  |-  M  =  ( -v `  U
)
3 minveco.n . . 3  |-  N  =  ( normCV `  U )
4 minveco.y . . 3  |-  Y  =  ( BaseSet `  W )
5 minveco.u . . 3  |-  ( ph  ->  U  e.  CPreHil OLD )
6 minveco.w . . 3  |-  ( ph  ->  W  e.  ( (
SubSp `  U )  i^i 
CBan ) )
7 minveco.a . . 3  |-  ( ph  ->  A  e.  X )
8 minveco.d . . 3  |-  D  =  ( IndMet `  U )
9 minveco.j . . 3  |-  J  =  ( MetOpen `  D )
10 minveco.r . . 3  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
11 minveco.s . . 3  |-  S  =  sup ( R ,  RR ,  `'  <  )
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11minvecolem5 24304 . 2  |-  ( ph  ->  E. x  e.  Y  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) )
135ad2antrr 725 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  Y  /\  w  e.  Y )
)  /\  ( (
( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  /\  (
( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 ) ) )  ->  U  e.  CPreHil OLD )
146ad2antrr 725 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  Y  /\  w  e.  Y )
)  /\  ( (
( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  /\  (
( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 ) ) )  ->  W  e.  ( ( SubSp `  U )  i^i  CBan ) )
157ad2antrr 725 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  Y  /\  w  e.  Y )
)  /\  ( (
( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  /\  (
( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 ) ) )  ->  A  e.  X
)
16 0re 9407 . . . . . . 7  |-  0  e.  RR
1716a1i 11 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  Y  /\  w  e.  Y )
)  /\  ( (
( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  /\  (
( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 ) ) )  ->  0  e.  RR )
18 0le0 10432 . . . . . . 7  |-  0  <_  0
1918a1i 11 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  Y  /\  w  e.  Y )
)  /\  ( (
( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  /\  (
( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 ) ) )  ->  0  <_  0
)
20 simplrl 759 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  Y  /\  w  e.  Y )
)  /\  ( (
( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  /\  (
( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 ) ) )  ->  x  e.  Y
)
21 simplrr 760 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  Y  /\  w  e.  Y )
)  /\  ( (
( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  /\  (
( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 ) ) )  ->  w  e.  Y
)
22 simprl 755 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  Y  /\  w  e.  Y )
)  /\  ( (
( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  /\  (
( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 ) ) )  ->  ( ( A D x ) ^
2 )  <_  (
( S ^ 2 )  +  0 ) )
23 simprr 756 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  Y  /\  w  e.  Y )
)  /\  ( (
( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  /\  (
( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 ) ) )  ->  ( ( A D w ) ^
2 )  <_  (
( S ^ 2 )  +  0 ) )
241, 2, 3, 4, 13, 14, 15, 8, 9, 10, 11, 17, 19, 20, 21, 22, 23minvecolem2 24298 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  Y  /\  w  e.  Y )
)  /\  ( (
( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  /\  (
( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 ) ) )  ->  ( ( x D w ) ^
2 )  <_  (
4  x.  0 ) )
2524ex 434 . . . 4  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( ( ( A D x ) ^ 2 )  <_ 
( ( S ^
2 )  +  0 )  /\  ( ( A D w ) ^ 2 )  <_ 
( ( S ^
2 )  +  0 ) )  ->  (
( x D w ) ^ 2 )  <_  ( 4  x.  0 ) ) )
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11minvecolem6 24305 . . . . . 6  |-  ( (
ph  /\  x  e.  Y )  ->  (
( ( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  <->  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) ) )
2726adantrr 716 . . . . 5  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( ( A D x ) ^
2 )  <_  (
( S ^ 2 )  +  0 )  <->  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) ) )
281, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11minvecolem6 24305 . . . . . 6  |-  ( (
ph  /\  w  e.  Y )  ->  (
( ( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  <->  A. y  e.  Y  ( N `  ( A M w ) )  <_  ( N `  ( A M y ) ) ) )
2928adantrl 715 . . . . 5  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( ( A D w ) ^
2 )  <_  (
( S ^ 2 )  +  0 )  <->  A. y  e.  Y  ( N `  ( A M w ) )  <_  ( N `  ( A M y ) ) ) )
3027, 29anbi12d 710 . . . 4  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( ( ( A D x ) ^ 2 )  <_ 
( ( S ^
2 )  +  0 )  /\  ( ( A D w ) ^ 2 )  <_ 
( ( S ^
2 )  +  0 ) )  <->  ( A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) )  /\  A. y  e.  Y  ( N `  ( A M w ) )  <_  ( N `  ( A M y ) ) ) ) )
31 4cn 10420 . . . . . . 7  |-  4  e.  CC
3231mul01i 9580 . . . . . 6  |-  ( 4  x.  0 )  =  0
3332breq2i 4321 . . . . 5  |-  ( ( ( x D w ) ^ 2 )  <_  ( 4  x.  0 )  <->  ( (
x D w ) ^ 2 )  <_ 
0 )
34 phnv 24236 . . . . . . . . . . . 12  |-  ( U  e.  CPreHil OLD  ->  U  e.  NrmCVec )
355, 34syl 16 . . . . . . . . . . 11  |-  ( ph  ->  U  e.  NrmCVec )
3635adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  ->  U  e.  NrmCVec )
371, 8imsmet 24104 . . . . . . . . . 10  |-  ( U  e.  NrmCVec  ->  D  e.  ( Met `  X ) )
3836, 37syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  ->  D  e.  ( Met `  X ) )
39 inss1 3591 . . . . . . . . . . . . 13  |-  ( (
SubSp `  U )  i^i 
CBan )  C_  ( SubSp `  U )
4039, 6sseldi 3375 . . . . . . . . . . . 12  |-  ( ph  ->  W  e.  ( SubSp `  U ) )
41 eqid 2443 . . . . . . . . . . . . 13  |-  ( SubSp `  U )  =  (
SubSp `  U )
421, 4, 41sspba 24147 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  W  e.  ( SubSp `  U )
)  ->  Y  C_  X
)
4335, 40, 42syl2anc 661 . . . . . . . . . . 11  |-  ( ph  ->  Y  C_  X )
4443adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  ->  Y  C_  X )
45 simprl 755 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  ->  x  e.  Y )
4644, 45sseldd 3378 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  ->  x  e.  X )
47 simprr 756 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  ->  w  e.  Y )
4844, 47sseldd 3378 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  ->  w  e.  X )
49 metcl 19929 . . . . . . . . 9  |-  ( ( D  e.  ( Met `  X )  /\  x  e.  X  /\  w  e.  X )  ->  (
x D w )  e.  RR )
5038, 46, 48, 49syl3anc 1218 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( x D w )  e.  RR )
5150sqge0d 12056 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
0  <_  ( (
x D w ) ^ 2 ) )
5251biantrud 507 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( ( x D w ) ^
2 )  <_  0  <->  ( ( ( x D w ) ^ 2 )  <_  0  /\  0  <_  ( ( x D w ) ^
2 ) ) ) )
5350resqcld 12055 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( x D w ) ^ 2 )  e.  RR )
54 letri3 9481 . . . . . . 7  |-  ( ( ( ( x D w ) ^ 2 )  e.  RR  /\  0  e.  RR )  ->  ( ( ( x D w ) ^
2 )  =  0  <-> 
( ( ( x D w ) ^
2 )  <_  0  /\  0  <_  ( ( x D w ) ^ 2 ) ) ) )
5553, 16, 54sylancl 662 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( ( x D w ) ^
2 )  =  0  <-> 
( ( ( x D w ) ^
2 )  <_  0  /\  0  <_  ( ( x D w ) ^ 2 ) ) ) )
5650recnd 9433 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( x D w )  e.  CC )
57 sqeq0 11951 . . . . . . . 8  |-  ( ( x D w )  e.  CC  ->  (
( ( x D w ) ^ 2 )  =  0  <->  (
x D w )  =  0 ) )
5856, 57syl 16 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( ( x D w ) ^
2 )  =  0  <-> 
( x D w )  =  0 ) )
59 meteq0 19936 . . . . . . . 8  |-  ( ( D  e.  ( Met `  X )  /\  x  e.  X  /\  w  e.  X )  ->  (
( x D w )  =  0  <->  x  =  w ) )
6038, 46, 48, 59syl3anc 1218 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( x D w )  =  0  <-> 
x  =  w ) )
6158, 60bitrd 253 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( ( x D w ) ^
2 )  =  0  <-> 
x  =  w ) )
6252, 55, 613bitr2d 281 . . . . 5  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( ( x D w ) ^
2 )  <_  0  <->  x  =  w ) )
6333, 62syl5bb 257 . . . 4  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( ( x D w ) ^
2 )  <_  (
4  x.  0 )  <-> 
x  =  w ) )
6425, 30, 633imtr3d 267 . . 3  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) )  /\  A. y  e.  Y  ( N `  ( A M w ) )  <_  ( N `  ( A M y ) ) )  ->  x  =  w )
)
6564ralrimivva 2829 . 2  |-  ( ph  ->  A. x  e.  Y  A. w  e.  Y  ( ( A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) )  /\  A. y  e.  Y  ( N `  ( A M w ) )  <_  ( N `  ( A M y ) ) )  ->  x  =  w )
)
66 oveq2 6120 . . . . . 6  |-  ( x  =  w  ->  ( A M x )  =  ( A M w ) )
6766fveq2d 5716 . . . . 5  |-  ( x  =  w  ->  ( N `  ( A M x ) )  =  ( N `  ( A M w ) ) )
6867breq1d 4323 . . . 4  |-  ( x  =  w  ->  (
( N `  ( A M x ) )  <_  ( N `  ( A M y ) )  <->  ( N `  ( A M w ) )  <_  ( N `  ( A M y ) ) ) )
6968ralbidv 2756 . . 3  |-  ( x  =  w  ->  ( A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) )  <->  A. y  e.  Y  ( N `  ( A M w ) )  <_  ( N `  ( A M y ) ) ) )
7069reu4 3174 . 2  |-  ( E! x  e.  Y  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) )  <->  ( E. x  e.  Y  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) )  /\  A. x  e.  Y  A. w  e.  Y  ( ( A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) )  /\  A. y  e.  Y  ( N `  ( A M w ) )  <_  ( N `  ( A M y ) ) )  ->  x  =  w ) ) )
7112, 65, 70sylanbrc 664 1  |-  ( ph  ->  E! x  e.  Y  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2736   E.wrex 2737   E!wreu 2738    i^i cin 3348    C_ wss 3349   class class class wbr 4313    e. cmpt 4371   `'ccnv 4860   ran crn 4862   ` cfv 5439  (class class class)co 6112   supcsup 7711   CCcc 9301   RRcr 9302   0cc0 9303    + caddc 9306    x. cmul 9308    < clt 9439    <_ cle 9440   2c2 10392   4c4 10394   ^cexp 11886   Metcme 17824   MetOpencmopn 17828   NrmCVeccnv 23984   BaseSetcba 23986   -vcnsb 23989   normCVcnmcv 23990   IndMetcims 23991   SubSpcss 24141   CPreHil OLDccphlo 24234   CBanccbn 24285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-inf2 7868  ax-cc 8625  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380  ax-pre-sup 9381  ax-addf 9382  ax-mulf 9383
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-int 4150  df-iun 4194  df-iin 4195  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-isom 5448  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-om 6498  df-1st 6598  df-2nd 6599  df-recs 6853  df-rdg 6887  df-oadd 6945  df-er 7122  df-map 7237  df-pm 7238  df-en 7332  df-dom 7333  df-sdom 7334  df-fin 7335  df-fi 7682  df-sup 7712  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-div 10015  df-nn 10344  df-2 10401  df-3 10402  df-4 10403  df-n0 10601  df-z 10668  df-uz 10883  df-q 10975  df-rp 11013  df-xneg 11110  df-xadd 11111  df-xmul 11112  df-ico 11327  df-icc 11328  df-fl 11663  df-seq 11828  df-exp 11887  df-cj 12609  df-re 12610  df-im 12611  df-sqr 12745  df-abs 12746  df-rest 14382  df-topgen 14403  df-psmet 17831  df-xmet 17832  df-met 17833  df-bl 17834  df-mopn 17835  df-fbas 17836  df-fg 17837  df-top 18525  df-bases 18527  df-topon 18528  df-cld 18645  df-ntr 18646  df-cls 18647  df-nei 18724  df-lm 18855  df-haus 18941  df-fil 19441  df-fm 19533  df-flim 19534  df-flf 19535  df-cfil 20788  df-cau 20789  df-cmet 20790  df-grpo 23700  df-gid 23701  df-ginv 23702  df-gdiv 23703  df-ablo 23791  df-vc 23946  df-nv 23992  df-va 23995  df-ba 23996  df-sm 23997  df-0v 23998  df-vs 23999  df-nmcv 24000  df-ims 24001  df-ssp 24142  df-ph 24235  df-cbn 24286
This theorem is referenced by:  minveco  24307
  Copyright terms: Public domain W3C validator