MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem4 Structured version   Visualization version   Unicode version

Theorem minvecolem4 26522
Description: Lemma for minveco 26526. The convergent point of the cauchy sequence  F attains the minimum distance, and so is closer to  A than any other point in  Y. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x  |-  X  =  ( BaseSet `  U )
minveco.m  |-  M  =  ( -v `  U
)
minveco.n  |-  N  =  ( normCV `  U )
minveco.y  |-  Y  =  ( BaseSet `  W )
minveco.u  |-  ( ph  ->  U  e.  CPreHil OLD )
minveco.w  |-  ( ph  ->  W  e.  ( (
SubSp `  U )  i^i 
CBan ) )
minveco.a  |-  ( ph  ->  A  e.  X )
minveco.d  |-  D  =  ( IndMet `  U )
minveco.j  |-  J  =  ( MetOpen `  D )
minveco.r  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
minveco.s  |-  S  = inf ( R ,  RR ,  <  )
minveco.f  |-  ( ph  ->  F : NN --> Y )
minveco.1  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( A D ( F `
 n ) ) ^ 2 )  <_ 
( ( S ^
2 )  +  ( 1  /  n ) ) )
minveco.t  |-  T  =  ( 1  /  (
( ( ( ( A D ( ( ~~> t `  J ) `
 F ) )  +  S )  / 
2 ) ^ 2 )  -  ( S ^ 2 ) ) )
Assertion
Ref Expression
minvecolem4  |-  ( ph  ->  E. x  e.  Y  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) )
Distinct variable groups:    x, n, y, F    n, J, x, y    x, M, y   
x, N, y    ph, n, x, y    x, R    S, n, x, y    A, n, x, y    D, n, x, y    x, U, y    x, W, y    T, n    n, X, x   
n, Y, x, y
Allowed substitution hints:    R( y, n)    T( x, y)    U( n)    M( n)    N( n)    W( n)    X( y)

Proof of Theorem minvecolem4
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 minveco.u . . . . . 6  |-  ( ph  ->  U  e.  CPreHil OLD )
2 phnv 26455 . . . . . 6  |-  ( U  e.  CPreHil OLD  ->  U  e.  NrmCVec )
3 minveco.x . . . . . . 7  |-  X  =  ( BaseSet `  U )
4 minveco.d . . . . . . 7  |-  D  =  ( IndMet `  U )
53, 4imsxmet 26324 . . . . . 6  |-  ( U  e.  NrmCVec  ->  D  e.  ( *Met `  X
) )
61, 2, 53syl 18 . . . . 5  |-  ( ph  ->  D  e.  ( *Met `  X ) )
7 minveco.j . . . . . 6  |-  J  =  ( MetOpen `  D )
87methaus 21535 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  J  e.  Haus )
9 lmfun 20397 . . . . 5  |-  ( J  e.  Haus  ->  Fun  ( ~~> t `  J )
)
106, 8, 93syl 18 . . . 4  |-  ( ph  ->  Fun  ( ~~> t `  J ) )
11 minveco.m . . . . . 6  |-  M  =  ( -v `  U
)
12 minveco.n . . . . . 6  |-  N  =  ( normCV `  U )
13 minveco.y . . . . . 6  |-  Y  =  ( BaseSet `  W )
14 minveco.w . . . . . 6  |-  ( ph  ->  W  e.  ( (
SubSp `  U )  i^i 
CBan ) )
15 minveco.a . . . . . 6  |-  ( ph  ->  A  e.  X )
16 minveco.r . . . . . 6  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
17 minveco.s . . . . . 6  |-  S  = inf ( R ,  RR ,  <  )
18 minveco.f . . . . . 6  |-  ( ph  ->  F : NN --> Y )
19 minveco.1 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( A D ( F `
 n ) ) ^ 2 )  <_ 
( ( S ^
2 )  +  ( 1  /  n ) ) )
203, 11, 12, 13, 1, 14, 15, 4, 7, 16, 17, 18, 19minvecolem4a 26519 . . . . 5  |-  ( ph  ->  F ( ~~> t `  ( MetOpen `  ( D  |`  ( Y  X.  Y
) ) ) ) ( ( ~~> t `  ( MetOpen `  ( D  |`  ( Y  X.  Y
) ) ) ) `
 F ) )
21 eqid 2451 . . . . . . 7  |-  ( Jt  Y )  =  ( Jt  Y )
22 nnuz 11194 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
23 fvex 5875 . . . . . . . . 9  |-  ( BaseSet `  W )  e.  _V
2413, 23eqeltri 2525 . . . . . . . 8  |-  Y  e. 
_V
2524a1i 11 . . . . . . 7  |-  ( ph  ->  Y  e.  _V )
261, 2syl 17 . . . . . . . 8  |-  ( ph  ->  U  e.  NrmCVec )
277mopntop 21455 . . . . . . . 8  |-  ( D  e.  ( *Met `  X )  ->  J  e.  Top )
2826, 5, 273syl 18 . . . . . . 7  |-  ( ph  ->  J  e.  Top )
29 elin 3617 . . . . . . . . . . . . 13  |-  ( W  e.  ( ( SubSp `  U )  i^i  CBan ) 
<->  ( W  e.  (
SubSp `  U )  /\  W  e.  CBan ) )
3014, 29sylib 200 . . . . . . . . . . . 12  |-  ( ph  ->  ( W  e.  (
SubSp `  U )  /\  W  e.  CBan ) )
3130simpld 461 . . . . . . . . . . 11  |-  ( ph  ->  W  e.  ( SubSp `  U ) )
32 eqid 2451 . . . . . . . . . . . 12  |-  ( SubSp `  U )  =  (
SubSp `  U )
333, 13, 32sspba 26366 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  W  e.  ( SubSp `  U )
)  ->  Y  C_  X
)
3426, 31, 33syl2anc 667 . . . . . . . . . 10  |-  ( ph  ->  Y  C_  X )
35 xmetres2 21376 . . . . . . . . . 10  |-  ( ( D  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  ( D  |`  ( Y  X.  Y
) )  e.  ( *Met `  Y
) )
366, 34, 35syl2anc 667 . . . . . . . . 9  |-  ( ph  ->  ( D  |`  ( Y  X.  Y ) )  e.  ( *Met `  Y ) )
37 eqid 2451 . . . . . . . . . 10  |-  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) )  =  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) )
3837mopntopon 21454 . . . . . . . . 9  |-  ( ( D  |`  ( Y  X.  Y ) )  e.  ( *Met `  Y )  ->  ( MetOpen
`  ( D  |`  ( Y  X.  Y
) ) )  e.  (TopOn `  Y )
)
3936, 38syl 17 . . . . . . . 8  |-  ( ph  ->  ( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  e.  (TopOn `  Y )
)
40 lmcl 20313 . . . . . . . 8  |-  ( ( ( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  e.  (TopOn `  Y )  /\  F ( ~~> t `  ( MetOpen `  ( D  |`  ( Y  X.  Y
) ) ) ) ( ( ~~> t `  ( MetOpen `  ( D  |`  ( Y  X.  Y
) ) ) ) `
 F ) )  ->  ( ( ~~> t `  ( MetOpen `  ( D  |`  ( Y  X.  Y
) ) ) ) `
 F )  e.  Y )
4139, 20, 40syl2anc 667 . . . . . . 7  |-  ( ph  ->  ( ( ~~> t `  ( MetOpen `  ( D  |`  ( Y  X.  Y
) ) ) ) `
 F )  e.  Y )
42 1zzd 10968 . . . . . . 7  |-  ( ph  ->  1  e.  ZZ )
4321, 22, 25, 28, 41, 42, 18lmss 20314 . . . . . 6  |-  ( ph  ->  ( F ( ~~> t `  J ) ( ( ~~> t `  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) ) ) `  F
)  <->  F ( ~~> t `  ( Jt  Y ) ) ( ( ~~> t `  ( MetOpen
`  ( D  |`  ( Y  X.  Y
) ) ) ) `
 F ) ) )
44 eqid 2451 . . . . . . . . . 10  |-  ( D  |`  ( Y  X.  Y
) )  =  ( D  |`  ( Y  X.  Y ) )
4544, 7, 37metrest 21539 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  ( Jt  Y
)  =  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) ) )
466, 34, 45syl2anc 667 . . . . . . . 8  |-  ( ph  ->  ( Jt  Y )  =  (
MetOpen `  ( D  |`  ( Y  X.  Y
) ) ) )
4746fveq2d 5869 . . . . . . 7  |-  ( ph  ->  ( ~~> t `  ( Jt  Y ) )  =  ( ~~> t `  ( MetOpen
`  ( D  |`  ( Y  X.  Y
) ) ) ) )
4847breqd 4413 . . . . . 6  |-  ( ph  ->  ( F ( ~~> t `  ( Jt  Y ) ) ( ( ~~> t `  ( MetOpen
`  ( D  |`  ( Y  X.  Y
) ) ) ) `
 F )  <->  F ( ~~> t `  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) ) ) ( ( ~~> t `  ( MetOpen `  ( D  |`  ( Y  X.  Y
) ) ) ) `
 F ) ) )
4943, 48bitrd 257 . . . . 5  |-  ( ph  ->  ( F ( ~~> t `  J ) ( ( ~~> t `  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) ) ) `  F
)  <->  F ( ~~> t `  ( MetOpen `  ( D  |`  ( Y  X.  Y
) ) ) ) ( ( ~~> t `  ( MetOpen `  ( D  |`  ( Y  X.  Y
) ) ) ) `
 F ) ) )
5020, 49mpbird 236 . . . 4  |-  ( ph  ->  F ( ~~> t `  J ) ( ( ~~> t `  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) ) ) `  F
) )
51 funbrfv 5903 . . . 4  |-  ( Fun  ( ~~> t `  J
)  ->  ( F
( ~~> t `  J
) ( ( ~~> t `  ( MetOpen `  ( D  |`  ( Y  X.  Y
) ) ) ) `
 F )  -> 
( ( ~~> t `  J ) `  F
)  =  ( ( ~~> t `  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) ) ) `  F
) ) )
5210, 50, 51sylc 62 . . 3  |-  ( ph  ->  ( ( ~~> t `  J ) `  F
)  =  ( ( ~~> t `  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) ) ) `  F
) )
5352, 41eqeltrd 2529 . 2  |-  ( ph  ->  ( ( ~~> t `  J ) `  F
)  e.  Y )
543, 11, 12, 13, 1, 14, 15, 4, 7, 16, 17, 18, 19minvecolem4b 26520 . . . . . 6  |-  ( ph  ->  ( ( ~~> t `  J ) `  F
)  e.  X )
553, 11, 12, 4imsdval 26318 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  (
( ~~> t `  J
) `  F )  e.  X )  ->  ( A D ( ( ~~> t `  J ) `  F
) )  =  ( N `  ( A M ( ( ~~> t `  J ) `  F
) ) ) )
5626, 15, 54, 55syl3anc 1268 . . . . 5  |-  ( ph  ->  ( A D ( ( ~~> t `  J
) `  F )
)  =  ( N `
 ( A M ( ( ~~> t `  J ) `  F
) ) ) )
5756adantr 467 . . . 4  |-  ( (
ph  /\  y  e.  Y )  ->  ( A D ( ( ~~> t `  J ) `  F
) )  =  ( N `  ( A M ( ( ~~> t `  J ) `  F
) ) ) )
583, 4imsmet 26323 . . . . . . . 8  |-  ( U  e.  NrmCVec  ->  D  e.  ( Met `  X ) )
591, 2, 583syl 18 . . . . . . 7  |-  ( ph  ->  D  e.  ( Met `  X ) )
60 metcl 21347 . . . . . . 7  |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  (
( ~~> t `  J
) `  F )  e.  X )  ->  ( A D ( ( ~~> t `  J ) `  F
) )  e.  RR )
6159, 15, 54, 60syl3anc 1268 . . . . . 6  |-  ( ph  ->  ( A D ( ( ~~> t `  J
) `  F )
)  e.  RR )
6261adantr 467 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  ( A D ( ( ~~> t `  J ) `  F
) )  e.  RR )
633, 11, 12, 13, 1, 14, 15, 4, 7, 16, 17, 18, 19minvecolem4c 26521 . . . . . 6  |-  ( ph  ->  S  e.  RR )
6463adantr 467 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  S  e.  RR )
6526adantr 467 . . . . . 6  |-  ( (
ph  /\  y  e.  Y )  ->  U  e.  NrmCVec )
6615adantr 467 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  A  e.  X )
6734sselda 3432 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  y  e.  X )
683, 11nvmcl 26268 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  y  e.  X )  ->  ( A M y )  e.  X )
6965, 66, 67, 68syl3anc 1268 . . . . . 6  |-  ( (
ph  /\  y  e.  Y )  ->  ( A M y )  e.  X )
703, 12nvcl 26288 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  ( A M y )  e.  X )  ->  ( N `  ( A M y ) )  e.  RR )
7165, 69, 70syl2anc 667 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  ( N `  ( A M y ) )  e.  RR )
7263, 61ltnled 9782 . . . . . . . 8  |-  ( ph  ->  ( S  <  ( A D ( ( ~~> t `  J ) `  F
) )  <->  -.  ( A D ( ( ~~> t `  J ) `  F
) )  <_  S
) )
73 eqid 2451 . . . . . . . . . . 11  |-  ( ZZ>= `  ( ( |_ `  T )  +  1 ) )  =  (
ZZ>= `  ( ( |_
`  T )  +  1 ) )
746adantr 467 . . . . . . . . . . 11  |-  ( (
ph  /\  S  <  ( A D ( ( ~~> t `  J ) `
 F ) ) )  ->  D  e.  ( *Met `  X
) )
75 minveco.t . . . . . . . . . . . . . . 15  |-  T  =  ( 1  /  (
( ( ( ( A D ( ( ~~> t `  J ) `
 F ) )  +  S )  / 
2 ) ^ 2 )  -  ( S ^ 2 ) ) )
7661, 63readdcld 9670 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( A D ( ( ~~> t `  J ) `  F
) )  +  S
)  e.  RR )
7776rehalfcld 10859 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( ( A D ( ( ~~> t `  J ) `  F
) )  +  S
)  /  2 )  e.  RR )
7877resqcld 12442 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( ( A D ( ( ~~> t `  J ) `
 F ) )  +  S )  / 
2 ) ^ 2 )  e.  RR )
7963resqcld 12442 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( S ^ 2 )  e.  RR )
8078, 79resubcld 10047 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( ( ( ( A D ( ( ~~> t `  J
) `  F )
)  +  S )  /  2 ) ^
2 )  -  ( S ^ 2 ) )  e.  RR )
8180adantr 467 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  S  <  ( A D ( ( ~~> t `  J ) `
 F ) ) )  ->  ( (
( ( ( A D ( ( ~~> t `  J ) `  F
) )  +  S
)  /  2 ) ^ 2 )  -  ( S ^ 2 ) )  e.  RR )
8263, 61, 63ltadd1d 10206 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( S  <  ( A D ( ( ~~> t `  J ) `  F
) )  <->  ( S  +  S )  <  (
( A D ( ( ~~> t `  J
) `  F )
)  +  S ) ) )
8363recnd 9669 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  S  e.  CC )
84832timesd 10855 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( 2  x.  S
)  =  ( S  +  S ) )
8584breq1d 4412 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( 2  x.  S )  <  (
( A D ( ( ~~> t `  J
) `  F )
)  +  S )  <-> 
( S  +  S
)  <  ( ( A D ( ( ~~> t `  J ) `  F
) )  +  S
) ) )
86 2re 10679 . . . . . . . . . . . . . . . . . . . . . . 23  |-  2  e.  RR
87 2pos 10701 . . . . . . . . . . . . . . . . . . . . . . 23  |-  0  <  2
8886, 87pm3.2i 457 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 2  e.  RR  /\  0  <  2 )
8988a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( 2  e.  RR  /\  0  <  2 ) )
90 ltmuldiv2 10479 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( S  e.  RR  /\  ( ( A D ( ( ~~> t `  J ) `  F
) )  +  S
)  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( (
2  x.  S )  <  ( ( A D ( ( ~~> t `  J ) `  F
) )  +  S
)  <->  S  <  ( ( ( A D ( ( ~~> t `  J
) `  F )
)  +  S )  /  2 ) ) )
9163, 76, 89, 90syl3anc 1268 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( 2  x.  S )  <  (
( A D ( ( ~~> t `  J
) `  F )
)  +  S )  <-> 
S  <  ( (
( A D ( ( ~~> t `  J
) `  F )
)  +  S )  /  2 ) ) )
9282, 85, 913bitr2d 285 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( S  <  ( A D ( ( ~~> t `  J ) `  F
) )  <->  S  <  ( ( ( A D ( ( ~~> t `  J ) `  F
) )  +  S
)  /  2 ) ) )
933, 11, 12, 13, 1, 14, 15, 4, 7, 16minvecolem1 26516 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( R  C_  RR  /\  R  =/=  (/)  /\  A. w  e.  R  0  <_  w ) )
9493simp3d 1022 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  A. w  e.  R 
0  <_  w )
9593simp1d 1020 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  R  C_  RR )
9693simp2d 1021 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  R  =/=  (/) )
97 0re 9643 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  0  e.  RR
98 breq1 4405 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  =  0  ->  (
x  <_  w  <->  0  <_  w ) )
9998ralbidv 2827 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x  =  0  ->  ( A. w  e.  R  x  <_  w  <->  A. w  e.  R  0  <_  w ) )
10099rspcev 3150 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( 0  e.  RR  /\  A. w  e.  R  0  <_  w )  ->  E. x  e.  RR  A. w  e.  R  x  <_  w )
10197, 94, 100sylancr 669 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  E. x  e.  RR  A. w  e.  R  x  <_  w )
10297a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  0  e.  RR )
103 infregelb 10594 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( R  C_  RR  /\  R  =/=  (/)  /\  E. x  e.  RR  A. w  e.  R  x  <_  w )  /\  0  e.  RR )  ->  (
0  <_ inf ( R ,  RR ,  <  )  <->  A. w  e.  R  0  <_  w ) )
10495, 96, 101, 102, 103syl31anc 1271 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( 0  <_ inf ( R ,  RR ,  <  )  <->  A. w  e.  R 
0  <_  w )
)
10594, 104mpbird 236 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  0  <_ inf ( R ,  RR ,  <  )
)
106105, 17syl6breqr 4443 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  0  <_  S )
107 metge0 21360 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  (
( ~~> t `  J
) `  F )  e.  X )  ->  0  <_  ( A D ( ( ~~> t `  J
) `  F )
) )
10859, 15, 54, 107syl3anc 1268 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  0  <_  ( A D ( ( ~~> t `  J ) `  F
) ) )
10961, 63, 108, 106addge0d 10189 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  0  <_  ( ( A D ( ( ~~> t `  J ) `  F
) )  +  S
) )
110 divge0 10474 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( A D ( ( ~~> t `  J ) `  F
) )  +  S
)  e.  RR  /\  0  <_  ( ( A D ( ( ~~> t `  J ) `  F
) )  +  S
) )  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  0  <_  (
( ( A D ( ( ~~> t `  J ) `  F
) )  +  S
)  /  2 ) )
11176, 109, 89, 110syl21anc 1267 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  0  <_  ( (
( A D ( ( ~~> t `  J
) `  F )
)  +  S )  /  2 ) )
11263, 77, 106, 111lt2sqd 12450 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( S  <  (
( ( A D ( ( ~~> t `  J ) `  F
) )  +  S
)  /  2 )  <-> 
( S ^ 2 )  <  ( ( ( ( A D ( ( ~~> t `  J ) `  F
) )  +  S
)  /  2 ) ^ 2 ) ) )
11379, 78posdifd 10200 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( S ^
2 )  <  (
( ( ( A D ( ( ~~> t `  J ) `  F
) )  +  S
)  /  2 ) ^ 2 )  <->  0  <  ( ( ( ( ( A D ( ( ~~> t `  J ) `
 F ) )  +  S )  / 
2 ) ^ 2 )  -  ( S ^ 2 ) ) ) )
11492, 112, 1133bitrd 283 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( S  <  ( A D ( ( ~~> t `  J ) `  F
) )  <->  0  <  ( ( ( ( ( A D ( ( ~~> t `  J ) `
 F ) )  +  S )  / 
2 ) ^ 2 )  -  ( S ^ 2 ) ) ) )
115114biimpa 487 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  S  <  ( A D ( ( ~~> t `  J ) `
 F ) ) )  ->  0  <  ( ( ( ( ( A D ( ( ~~> t `  J ) `
 F ) )  +  S )  / 
2 ) ^ 2 )  -  ( S ^ 2 ) ) )
11681, 115elrpd 11338 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  S  <  ( A D ( ( ~~> t `  J ) `
 F ) ) )  ->  ( (
( ( ( A D ( ( ~~> t `  J ) `  F
) )  +  S
)  /  2 ) ^ 2 )  -  ( S ^ 2 ) )  e.  RR+ )
117116rpreccld 11351 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  S  <  ( A D ( ( ~~> t `  J ) `
 F ) ) )  ->  ( 1  /  ( ( ( ( ( A D ( ( ~~> t `  J ) `  F
) )  +  S
)  /  2 ) ^ 2 )  -  ( S ^ 2 ) ) )  e.  RR+ )
11875, 117syl5eqel 2533 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  S  <  ( A D ( ( ~~> t `  J ) `
 F ) ) )  ->  T  e.  RR+ )
119118rprege0d 11348 . . . . . . . . . . . . 13  |-  ( (
ph  /\  S  <  ( A D ( ( ~~> t `  J ) `
 F ) ) )  ->  ( T  e.  RR  /\  0  <_  T ) )
120 flge0nn0 12054 . . . . . . . . . . . . 13  |-  ( ( T  e.  RR  /\  0  <_  T )  -> 
( |_ `  T
)  e.  NN0 )
121 nn0p1nn 10909 . . . . . . . . . . . . 13  |-  ( ( |_ `  T )  e.  NN0  ->  ( ( |_ `  T )  +  1 )  e.  NN )
122119, 120, 1213syl 18 . . . . . . . . . . . 12  |-  ( (
ph  /\  S  <  ( A D ( ( ~~> t `  J ) `
 F ) ) )  ->  ( ( |_ `  T )  +  1 )  e.  NN )
123122nnzd 11039 . . . . . . . . . . 11  |-  ( (
ph  /\  S  <  ( A D ( ( ~~> t `  J ) `
 F ) ) )  ->  ( ( |_ `  T )  +  1 )  e.  ZZ )
12450, 52breqtrrd 4429 . . . . . . . . . . . 12  |-  ( ph  ->  F ( ~~> t `  J ) ( ( ~~> t `  J ) `
 F ) )
125124adantr 467 . . . . . . . . . . 11  |-  ( (
ph  /\  S  <  ( A D ( ( ~~> t `  J ) `
 F ) ) )  ->  F ( ~~> t `  J )
( ( ~~> t `  J ) `  F
) )
12615adantr 467 . . . . . . . . . . 11  |-  ( (
ph  /\  S  <  ( A D ( ( ~~> t `  J ) `
 F ) ) )  ->  A  e.  X )
12777adantr 467 . . . . . . . . . . . 12  |-  ( (
ph  /\  S  <  ( A D ( ( ~~> t `  J ) `
 F ) ) )  ->  ( (
( A D ( ( ~~> t `  J
) `  F )
)  +  S )  /  2 )  e.  RR )
128127rexrd 9690 . . . . . . . . . . 11  |-  ( (
ph  /\  S  <  ( A D ( ( ~~> t `  J ) `
 F ) ) )  ->  ( (
( A D ( ( ~~> t `  J
) `  F )
)  +  S )  /  2 )  e. 
RR* )
129 simpll 760 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  S  <  ( A D ( ( ~~> t `  J
) `  F )
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  T )  +  1 ) ) )  ->  ph )
130 eluznn 11229 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( |_ `  T )  +  1 )  e.  NN  /\  n  e.  ( ZZ>= `  ( ( |_ `  T )  +  1 ) ) )  ->  n  e.  NN )
131122, 130sylan 474 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  S  <  ( A D ( ( ~~> t `  J
) `  F )
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  T )  +  1 ) ) )  ->  n  e.  NN )
13259adantr 467 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  NN )  ->  D  e.  ( Met `  X
) )
13315adantr 467 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  NN )  ->  A  e.  X )
13418, 34fssd 5738 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  F : NN --> X )
135134ffvelrnda 6022 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n )  e.  X )
136 metcl 21347 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  ( F `  n )  e.  X )  ->  ( A D ( F `  n ) )  e.  RR )
137132, 133, 135, 136syl3anc 1268 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  NN )  ->  ( A D ( F `  n ) )  e.  RR )
138129, 131, 137syl2anc 667 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  S  <  ( A D ( ( ~~> t `  J
) `  F )
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  T )  +  1 ) ) )  ->  ( A D ( F `  n
) )  e.  RR )
139138resqcld 12442 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  S  <  ( A D ( ( ~~> t `  J
) `  F )
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  T )  +  1 ) ) )  ->  ( ( A D ( F `  n ) ) ^
2 )  e.  RR )
14063ad2antrr 732 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  S  <  ( A D ( ( ~~> t `  J
) `  F )
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  T )  +  1 ) ) )  ->  S  e.  RR )
141140resqcld 12442 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  S  <  ( A D ( ( ~~> t `  J
) `  F )
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  T )  +  1 ) ) )  ->  ( S ^
2 )  e.  RR )
142131nnrecred 10655 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  S  <  ( A D ( ( ~~> t `  J
) `  F )
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  T )  +  1 ) ) )  ->  ( 1  /  n )  e.  RR )
143141, 142readdcld 9670 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  S  <  ( A D ( ( ~~> t `  J
) `  F )
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  T )  +  1 ) ) )  ->  ( ( S ^ 2 )  +  ( 1  /  n
) )  e.  RR )
14478ad2antrr 732 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  S  <  ( A D ( ( ~~> t `  J
) `  F )
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  T )  +  1 ) ) )  ->  ( ( ( ( A D ( ( ~~> t `  J
) `  F )
)  +  S )  /  2 ) ^
2 )  e.  RR )
145129, 131, 19syl2anc 667 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  S  <  ( A D ( ( ~~> t `  J
) `  F )
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  T )  +  1 ) ) )  ->  ( ( A D ( F `  n ) ) ^
2 )  <_  (
( S ^ 2 )  +  ( 1  /  n ) ) )
146118adantr 467 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  S  <  ( A D ( ( ~~> t `  J
) `  F )
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  T )  +  1 ) ) )  ->  T  e.  RR+ )
147146rpred 11341 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  S  <  ( A D ( ( ~~> t `  J
) `  F )
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  T )  +  1 ) ) )  ->  T  e.  RR )
148 reflcl 12032 . . . . . . . . . . . . . . . . . 18  |-  ( T  e.  RR  ->  ( |_ `  T )  e.  RR )
149 peano2re 9806 . . . . . . . . . . . . . . . . . 18  |-  ( ( |_ `  T )  e.  RR  ->  (
( |_ `  T
)  +  1 )  e.  RR )
150147, 148, 1493syl 18 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  S  <  ( A D ( ( ~~> t `  J
) `  F )
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  T )  +  1 ) ) )  ->  ( ( |_
`  T )  +  1 )  e.  RR )
151131nnred 10624 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  S  <  ( A D ( ( ~~> t `  J
) `  F )
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  T )  +  1 ) ) )  ->  n  e.  RR )
152 fllep1 12037 . . . . . . . . . . . . . . . . . 18  |-  ( T  e.  RR  ->  T  <_  ( ( |_ `  T )  +  1 ) )
153147, 152syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  S  <  ( A D ( ( ~~> t `  J
) `  F )
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  T )  +  1 ) ) )  ->  T  <_  (
( |_ `  T
)  +  1 ) )
154 eluzle 11171 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( ZZ>= `  (
( |_ `  T
)  +  1 ) )  ->  ( ( |_ `  T )  +  1 )  <_  n
)
155154adantl 468 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  S  <  ( A D ( ( ~~> t `  J
) `  F )
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  T )  +  1 ) ) )  ->  ( ( |_
`  T )  +  1 )  <_  n
)
156147, 150, 151, 153, 155letrd 9792 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  S  <  ( A D ( ( ~~> t `  J
) `  F )
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  T )  +  1 ) ) )  ->  T  <_  n
)
15775, 156syl5eqbrr 4437 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  S  <  ( A D ( ( ~~> t `  J
) `  F )
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  T )  +  1 ) ) )  ->  ( 1  / 
( ( ( ( ( A D ( ( ~~> t `  J
) `  F )
)  +  S )  /  2 ) ^
2 )  -  ( S ^ 2 ) ) )  <_  n )
158 1red 9658 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  S  <  ( A D ( ( ~~> t `  J
) `  F )
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  T )  +  1 ) ) )  ->  1  e.  RR )
15980ad2antrr 732 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  S  <  ( A D ( ( ~~> t `  J
) `  F )
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  T )  +  1 ) ) )  ->  ( ( ( ( ( A D ( ( ~~> t `  J ) `  F
) )  +  S
)  /  2 ) ^ 2 )  -  ( S ^ 2 ) )  e.  RR )
160115adantr 467 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  S  <  ( A D ( ( ~~> t `  J
) `  F )
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  T )  +  1 ) ) )  ->  0  <  (
( ( ( ( A D ( ( ~~> t `  J ) `
 F ) )  +  S )  / 
2 ) ^ 2 )  -  ( S ^ 2 ) ) )
161131nngt0d 10653 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  S  <  ( A D ( ( ~~> t `  J
) `  F )
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  T )  +  1 ) ) )  ->  0  <  n
)
162 lediv23 10498 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  RR  /\  ( ( ( ( ( ( A D ( ( ~~> t `  J ) `  F
) )  +  S
)  /  2 ) ^ 2 )  -  ( S ^ 2 ) )  e.  RR  /\  0  <  ( ( ( ( ( A D ( ( ~~> t `  J ) `  F
) )  +  S
)  /  2 ) ^ 2 )  -  ( S ^ 2 ) ) )  /\  (
n  e.  RR  /\  0  <  n ) )  ->  ( ( 1  /  ( ( ( ( ( A D ( ( ~~> t `  J ) `  F
) )  +  S
)  /  2 ) ^ 2 )  -  ( S ^ 2 ) ) )  <_  n  <->  ( 1  /  n )  <_  ( ( ( ( ( A D ( ( ~~> t `  J ) `  F
) )  +  S
)  /  2 ) ^ 2 )  -  ( S ^ 2 ) ) ) )
163158, 159, 160, 151, 161, 162syl122anc 1277 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  S  <  ( A D ( ( ~~> t `  J
) `  F )
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  T )  +  1 ) ) )  ->  ( ( 1  /  ( ( ( ( ( A D ( ( ~~> t `  J ) `  F
) )  +  S
)  /  2 ) ^ 2 )  -  ( S ^ 2 ) ) )  <_  n  <->  ( 1  /  n )  <_  ( ( ( ( ( A D ( ( ~~> t `  J ) `  F
) )  +  S
)  /  2 ) ^ 2 )  -  ( S ^ 2 ) ) ) )
164157, 163mpbid 214 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  S  <  ( A D ( ( ~~> t `  J
) `  F )
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  T )  +  1 ) ) )  ->  ( 1  /  n )  <_  (
( ( ( ( A D ( ( ~~> t `  J ) `
 F ) )  +  S )  / 
2 ) ^ 2 )  -  ( S ^ 2 ) ) )
165141, 142, 144leaddsub2d 10215 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  S  <  ( A D ( ( ~~> t `  J
) `  F )
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  T )  +  1 ) ) )  ->  ( ( ( S ^ 2 )  +  ( 1  /  n ) )  <_ 
( ( ( ( A D ( ( ~~> t `  J ) `
 F ) )  +  S )  / 
2 ) ^ 2 )  <->  ( 1  /  n )  <_  (
( ( ( ( A D ( ( ~~> t `  J ) `
 F ) )  +  S )  / 
2 ) ^ 2 )  -  ( S ^ 2 ) ) ) )
166164, 165mpbird 236 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  S  <  ( A D ( ( ~~> t `  J
) `  F )
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  T )  +  1 ) ) )  ->  ( ( S ^ 2 )  +  ( 1  /  n
) )  <_  (
( ( ( A D ( ( ~~> t `  J ) `  F
) )  +  S
)  /  2 ) ^ 2 ) )
167139, 143, 144, 145, 166letrd 9792 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  S  <  ( A D ( ( ~~> t `  J
) `  F )
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  T )  +  1 ) ) )  ->  ( ( A D ( F `  n ) ) ^
2 )  <_  (
( ( ( A D ( ( ~~> t `  J ) `  F
) )  +  S
)  /  2 ) ^ 2 ) )
16877ad2antrr 732 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  S  <  ( A D ( ( ~~> t `  J
) `  F )
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  T )  +  1 ) ) )  ->  ( ( ( A D ( ( ~~> t `  J ) `
 F ) )  +  S )  / 
2 )  e.  RR )
169 metge0 21360 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  ( F `  n )  e.  X )  ->  0  <_  ( A D ( F `  n ) ) )
170132, 133, 135, 169syl3anc 1268 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  NN )  ->  0  <_ 
( A D ( F `  n ) ) )
171129, 131, 170syl2anc 667 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  S  <  ( A D ( ( ~~> t `  J
) `  F )
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  T )  +  1 ) ) )  ->  0  <_  ( A D ( F `  n ) ) )
172111ad2antrr 732 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  S  <  ( A D ( ( ~~> t `  J
) `  F )
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  T )  +  1 ) ) )  ->  0  <_  (
( ( A D ( ( ~~> t `  J ) `  F
) )  +  S
)  /  2 ) )
173138, 168, 171, 172le2sqd 12451 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  S  <  ( A D ( ( ~~> t `  J
) `  F )
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  T )  +  1 ) ) )  ->  ( ( A D ( F `  n ) )  <_ 
( ( ( A D ( ( ~~> t `  J ) `  F
) )  +  S
)  /  2 )  <-> 
( ( A D ( F `  n
) ) ^ 2 )  <_  ( (
( ( A D ( ( ~~> t `  J ) `  F
) )  +  S
)  /  2 ) ^ 2 ) ) )
174167, 173mpbird 236 . . . . . . . . . . 11  |-  ( ( ( ph  /\  S  <  ( A D ( ( ~~> t `  J
) `  F )
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  T )  +  1 ) ) )  ->  ( A D ( F `  n
) )  <_  (
( ( A D ( ( ~~> t `  J ) `  F
) )  +  S
)  /  2 ) )
17573, 7, 74, 123, 125, 126, 128, 174lmle 22271 . . . . . . . . . 10  |-  ( (
ph  /\  S  <  ( A D ( ( ~~> t `  J ) `
 F ) ) )  ->  ( A D ( ( ~~> t `  J ) `  F
) )  <_  (
( ( A D ( ( ~~> t `  J ) `  F
) )  +  S
)  /  2 ) )
17661, 63, 61leadd2d 10208 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( A D ( ( ~~> t `  J ) `  F
) )  <_  S  <->  ( ( A D ( ( ~~> t `  J
) `  F )
)  +  ( A D ( ( ~~> t `  J ) `  F
) ) )  <_ 
( ( A D ( ( ~~> t `  J ) `  F
) )  +  S
) ) )
17761recnd 9669 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A D ( ( ~~> t `  J
) `  F )
)  e.  CC )
1781772timesd 10855 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 2  x.  ( A D ( ( ~~> t `  J ) `  F
) ) )  =  ( ( A D ( ( ~~> t `  J ) `  F
) )  +  ( A D ( ( ~~> t `  J ) `
 F ) ) ) )
179178breq1d 4412 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 2  x.  ( A D ( ( ~~> t `  J
) `  F )
) )  <_  (
( A D ( ( ~~> t `  J
) `  F )
)  +  S )  <-> 
( ( A D ( ( ~~> t `  J ) `  F
) )  +  ( A D ( ( ~~> t `  J ) `
 F ) ) )  <_  ( ( A D ( ( ~~> t `  J ) `  F
) )  +  S
) ) )
180 lemuldiv2 10487 . . . . . . . . . . . . . 14  |-  ( ( ( A D ( ( ~~> t `  J
) `  F )
)  e.  RR  /\  ( ( A D ( ( ~~> t `  J ) `  F
) )  +  S
)  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( (
2  x.  ( A D ( ( ~~> t `  J ) `  F
) ) )  <_ 
( ( A D ( ( ~~> t `  J ) `  F
) )  +  S
)  <->  ( A D ( ( ~~> t `  J ) `  F
) )  <_  (
( ( A D ( ( ~~> t `  J ) `  F
) )  +  S
)  /  2 ) ) )
18188, 180mp3an3 1353 . . . . . . . . . . . . 13  |-  ( ( ( A D ( ( ~~> t `  J
) `  F )
)  e.  RR  /\  ( ( A D ( ( ~~> t `  J ) `  F
) )  +  S
)  e.  RR )  ->  ( ( 2  x.  ( A D ( ( ~~> t `  J ) `  F
) ) )  <_ 
( ( A D ( ( ~~> t `  J ) `  F
) )  +  S
)  <->  ( A D ( ( ~~> t `  J ) `  F
) )  <_  (
( ( A D ( ( ~~> t `  J ) `  F
) )  +  S
)  /  2 ) ) )
18261, 76, 181syl2anc 667 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 2  x.  ( A D ( ( ~~> t `  J
) `  F )
) )  <_  (
( A D ( ( ~~> t `  J
) `  F )
)  +  S )  <-> 
( A D ( ( ~~> t `  J
) `  F )
)  <_  ( (
( A D ( ( ~~> t `  J
) `  F )
)  +  S )  /  2 ) ) )
183176, 179, 1823bitr2d 285 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A D ( ( ~~> t `  J ) `  F
) )  <_  S  <->  ( A D ( ( ~~> t `  J ) `
 F ) )  <_  ( ( ( A D ( ( ~~> t `  J ) `
 F ) )  +  S )  / 
2 ) ) )
184183biimpar 488 . . . . . . . . . 10  |-  ( (
ph  /\  ( A D ( ( ~~> t `  J ) `  F
) )  <_  (
( ( A D ( ( ~~> t `  J ) `  F
) )  +  S
)  /  2 ) )  ->  ( A D ( ( ~~> t `  J ) `  F
) )  <_  S
)
185175, 184syldan 473 . . . . . . . . 9  |-  ( (
ph  /\  S  <  ( A D ( ( ~~> t `  J ) `
 F ) ) )  ->  ( A D ( ( ~~> t `  J ) `  F
) )  <_  S
)
186185ex 436 . . . . . . . 8  |-  ( ph  ->  ( S  <  ( A D ( ( ~~> t `  J ) `  F
) )  ->  ( A D ( ( ~~> t `  J ) `  F
) )  <_  S
) )
18772, 186sylbird 239 . . . . . . 7  |-  ( ph  ->  ( -.  ( A D ( ( ~~> t `  J ) `  F
) )  <_  S  ->  ( A D ( ( ~~> t `  J
) `  F )
)  <_  S )
)
188187pm2.18d 115 . . . . . 6  |-  ( ph  ->  ( A D ( ( ~~> t `  J
) `  F )
)  <_  S )
189188adantr 467 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  ( A D ( ( ~~> t `  J ) `  F
) )  <_  S
)
19095adantr 467 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  R  C_  RR )
191101adantr 467 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  E. x  e.  RR  A. w  e.  R  x  <_  w
)
192 simpr 463 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  Y )  ->  y  e.  Y )
193 fvex 5875 . . . . . . . . 9  |-  ( N `
 ( A M y ) )  e. 
_V
194 eqid 2451 . . . . . . . . . 10  |-  ( y  e.  Y  |->  ( N `
 ( A M y ) ) )  =  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
195194elrnmpt1 5083 . . . . . . . . 9  |-  ( ( y  e.  Y  /\  ( N `  ( A M y ) )  e.  _V )  -> 
( N `  ( A M y ) )  e.  ran  ( y  e.  Y  |->  ( N `
 ( A M y ) ) ) )
196192, 193, 195sylancl 668 . . . . . . . 8  |-  ( (
ph  /\  y  e.  Y )  ->  ( N `  ( A M y ) )  e.  ran  ( y  e.  Y  |->  ( N `
 ( A M y ) ) ) )
197196, 16syl6eleqr 2540 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  ( N `  ( A M y ) )  e.  R )
198 infrelb 10596 . . . . . . 7  |-  ( ( R  C_  RR  /\  E. x  e.  RR  A. w  e.  R  x  <_  w  /\  ( N `  ( A M y ) )  e.  R )  -> inf ( R ,  RR ,  <  )  <_ 
( N `  ( A M y ) ) )
199190, 191, 197, 198syl3anc 1268 . . . . . 6  |-  ( (
ph  /\  y  e.  Y )  -> inf ( R ,  RR ,  <  )  <_  ( N `  ( A M y ) ) )
20017, 199syl5eqbr 4436 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  S  <_  ( N `  ( A M y ) ) )
20162, 64, 71, 189, 200letrd 9792 . . . 4  |-  ( (
ph  /\  y  e.  Y )  ->  ( A D ( ( ~~> t `  J ) `  F
) )  <_  ( N `  ( A M y ) ) )
20257, 201eqbrtrrd 4425 . . 3  |-  ( (
ph  /\  y  e.  Y )  ->  ( N `  ( A M ( ( ~~> t `  J ) `  F
) ) )  <_ 
( N `  ( A M y ) ) )
203202ralrimiva 2802 . 2  |-  ( ph  ->  A. y  e.  Y  ( N `  ( A M ( ( ~~> t `  J ) `  F
) ) )  <_ 
( N `  ( A M y ) ) )
204 oveq2 6298 . . . . . 6  |-  ( x  =  ( ( ~~> t `  J ) `  F
)  ->  ( A M x )  =  ( A M ( ( ~~> t `  J
) `  F )
) )
205204fveq2d 5869 . . . . 5  |-  ( x  =  ( ( ~~> t `  J ) `  F
)  ->  ( N `  ( A M x ) )  =  ( N `  ( A M ( ( ~~> t `  J ) `  F
) ) ) )
206205breq1d 4412 . . . 4  |-  ( x  =  ( ( ~~> t `  J ) `  F
)  ->  ( ( N `  ( A M x ) )  <_  ( N `  ( A M y ) )  <->  ( N `  ( A M ( ( ~~> t `  J ) `
 F ) ) )  <_  ( N `  ( A M y ) ) ) )
207206ralbidv 2827 . . 3  |-  ( x  =  ( ( ~~> t `  J ) `  F
)  ->  ( A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) )  <->  A. y  e.  Y  ( N `  ( A M ( ( ~~> t `  J ) `  F
) ) )  <_ 
( N `  ( A M y ) ) ) )
208207rspcev 3150 . 2  |-  ( ( ( ( ~~> t `  J ) `  F
)  e.  Y  /\  A. y  e.  Y  ( N `  ( A M ( ( ~~> t `  J ) `  F
) ) )  <_ 
( N `  ( A M y ) ) )  ->  E. x  e.  Y  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) )
20953, 203, 208syl2anc 667 1  |-  ( ph  ->  E. x  e.  Y  A. y  e.  Y  ( N `  ( A M x ) )  <_  ( N `  ( A M y ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1444    e. wcel 1887    =/= wne 2622   A.wral 2737   E.wrex 2738   _Vcvv 3045    i^i cin 3403    C_ wss 3404   (/)c0 3731   class class class wbr 4402    |-> cmpt 4461    X. cxp 4832   ran crn 4835    |` cres 4836   Fun wfun 5576   -->wf 5578   ` cfv 5582  (class class class)co 6290  infcinf 7955   RRcr 9538   0cc0 9539   1c1 9540    + caddc 9542    x. cmul 9544    < clt 9675    <_ cle 9676    - cmin 9860    / cdiv 10269   NNcn 10609   2c2 10659   NN0cn0 10869   ZZ>=cuz 11159   RR+crp 11302   |_cfl 12026   ^cexp 12272   ↾t crest 15319   *Metcxmt 18955   Metcme 18956   MetOpencmopn 18960   Topctop 19917  TopOnctopon 19918   ~~> tclm 20242   Hauscha 20324   NrmCVeccnv 26203   BaseSetcba 26205   -vcnsb 26208   normCVcnmcv 26209   IndMetcims 26210   SubSpcss 26360   CPreHil OLDccphlo 26453   CBanccbn 26504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617  ax-addf 9618  ax-mulf 9619
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-iin 4281  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-om 6693  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-oadd 7186  df-er 7363  df-map 7474  df-pm 7475  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-fi 7925  df-sup 7956  df-inf 7957  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-n0 10870  df-z 10938  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ico 11641  df-icc 11642  df-fl 12028  df-seq 12214  df-exp 12273  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-rest 15321  df-topgen 15342  df-psmet 18962  df-xmet 18963  df-met 18964  df-bl 18965  df-mopn 18966  df-fbas 18967  df-fg 18968  df-top 19921  df-bases 19922  df-topon 19923  df-cld 20034  df-ntr 20035  df-cls 20036  df-nei 20114  df-lm 20245  df-haus 20331  df-fil 20861  df-fm 20953  df-flim 20954  df-flf 20955  df-cfil 22225  df-cau 22226  df-cmet 22227  df-grpo 25919  df-gid 25920  df-ginv 25921  df-gdiv 25922  df-ablo 26010  df-vc 26165  df-nv 26211  df-va 26214  df-ba 26215  df-sm 26216  df-0v 26217  df-vs 26218  df-nmcv 26219  df-ims 26220  df-ssp 26361  df-ph 26454  df-cbn 26505
This theorem is referenced by:  minvecolem5  26523
  Copyright terms: Public domain W3C validator