MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem3OLD Structured version   Visualization version   Unicode version

Theorem minvecolem3OLD 26528
Description: Lemma for minvecoOLD 26536. The sequence formed by taking elements successively closer to the infimum is Cauchy. (Contributed by Mario Carneiro, 8-May-2014.) Obsolete version of minvecolem3 26518 as of 4-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
minvecoOLD.x  |-  X  =  ( BaseSet `  U )
minvecoOLD.m  |-  M  =  ( -v `  U
)
minvecoOLD.n  |-  N  =  ( normCV `  U )
minvecoOLD.y  |-  Y  =  ( BaseSet `  W )
minvecoOLD.u  |-  ( ph  ->  U  e.  CPreHil OLD )
minvecoOLD.w  |-  ( ph  ->  W  e.  ( (
SubSp `  U )  i^i 
CBan ) )
minvecoOLD.a  |-  ( ph  ->  A  e.  X )
minvecoOLD.d  |-  D  =  ( IndMet `  U )
minvecoOLD.j  |-  J  =  ( MetOpen `  D )
minvecoOLD.r  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
minvecoOLD.s  |-  S  =  sup ( R ,  RR ,  `'  <  )
minvecoOLD.f  |-  ( ph  ->  F : NN --> Y )
minvecoOLD.1  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( A D ( F `
 n ) ) ^ 2 )  <_ 
( ( S ^
2 )  +  ( 1  /  n ) ) )
Assertion
Ref Expression
minvecolem3OLD  |-  ( ph  ->  F  e.  ( Cau `  D ) )
Distinct variable groups:    y, n, F    n, J, y    y, M    y, N    ph, n, y    S, n, y    A, n, y    D, n, y    y, U    y, W    n, X    n, Y, y
Allowed substitution hints:    R( y, n)    U( n)    M( n)    N( n)    W( n)    X( y)

Proof of Theorem minvecolem3OLD
Dummy variables  j  x  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4re 10686 . . . . . . 7  |-  4  e.  RR
2 4pos 10705 . . . . . . 7  |-  0  <  4
31, 2elrpii 11305 . . . . . 6  |-  4  e.  RR+
4 simpr 463 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR+ )
5 2z 10969 . . . . . . 7  |-  2  e.  ZZ
6 rpexpcl 12291 . . . . . . 7  |-  ( ( x  e.  RR+  /\  2  e.  ZZ )  ->  (
x ^ 2 )  e.  RR+ )
74, 5, 6sylancl 668 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x ^ 2 )  e.  RR+ )
8 rpdivcl 11325 . . . . . 6  |-  ( ( 4  e.  RR+  /\  (
x ^ 2 )  e.  RR+ )  ->  (
4  /  ( x ^ 2 ) )  e.  RR+ )
93, 7, 8sylancr 669 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 4  /  ( x ^
2 ) )  e.  RR+ )
10 rprege0 11316 . . . . 5  |-  ( ( 4  /  ( x ^ 2 ) )  e.  RR+  ->  ( ( 4  /  ( x ^ 2 ) )  e.  RR  /\  0  <_  ( 4  /  (
x ^ 2 ) ) ) )
11 flge0nn0 12054 . . . . 5  |-  ( ( ( 4  /  (
x ^ 2 ) )  e.  RR  /\  0  <_  ( 4  / 
( x ^ 2 ) ) )  -> 
( |_ `  (
4  /  ( x ^ 2 ) ) )  e.  NN0 )
12 nn0p1nn 10909 . . . . 5  |-  ( ( |_ `  ( 4  /  ( x ^
2 ) ) )  e.  NN0  ->  ( ( |_ `  ( 4  /  ( x ^
2 ) ) )  +  1 )  e.  NN )
139, 10, 11, 124syl 19 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 )  e.  NN )
14 minvecoOLD.u . . . . . . . . . . 11  |-  ( ph  ->  U  e.  CPreHil OLD )
15 phnv 26455 . . . . . . . . . . 11  |-  ( U  e.  CPreHil OLD  ->  U  e.  NrmCVec )
16 minvecoOLD.x . . . . . . . . . . . 12  |-  X  =  ( BaseSet `  U )
17 minvecoOLD.d . . . . . . . . . . . 12  |-  D  =  ( IndMet `  U )
1816, 17imsmet 26323 . . . . . . . . . . 11  |-  ( U  e.  NrmCVec  ->  D  e.  ( Met `  X ) )
1914, 15, 183syl 18 . . . . . . . . . 10  |-  ( ph  ->  D  e.  ( Met `  X ) )
2019ad2antrr 732 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  D  e.  ( Met `  X ) )
2114, 15syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  U  e.  NrmCVec )
22 inss1 3652 . . . . . . . . . . . . 13  |-  ( (
SubSp `  U )  i^i 
CBan )  C_  ( SubSp `  U )
23 minvecoOLD.w . . . . . . . . . . . . 13  |-  ( ph  ->  W  e.  ( (
SubSp `  U )  i^i 
CBan ) )
2422, 23sseldi 3430 . . . . . . . . . . . 12  |-  ( ph  ->  W  e.  ( SubSp `  U ) )
25 minvecoOLD.y . . . . . . . . . . . . 13  |-  Y  =  ( BaseSet `  W )
26 eqid 2451 . . . . . . . . . . . . 13  |-  ( SubSp `  U )  =  (
SubSp `  U )
2716, 25, 26sspba 26366 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  W  e.  ( SubSp `  U )
)  ->  Y  C_  X
)
2821, 24, 27syl2anc 667 . . . . . . . . . . 11  |-  ( ph  ->  Y  C_  X )
2928ad2antrr 732 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  Y  C_  X
)
30 minvecoOLD.f . . . . . . . . . . . 12  |-  ( ph  ->  F : NN --> Y )
3130ad2antrr 732 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  F : NN --> Y )
3213adantr 467 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( ( |_
`  ( 4  / 
( x ^ 2 ) ) )  +  1 )  e.  NN )
3331, 32ffvelrnd 6023 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( F `  ( ( |_ `  ( 4  /  (
x ^ 2 ) ) )  +  1 ) )  e.  Y
)
3429, 33sseldd 3433 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( F `  ( ( |_ `  ( 4  /  (
x ^ 2 ) ) )  +  1 ) )  e.  X
)
35 eluznn 11229 . . . . . . . . . . . 12  |-  ( ( ( ( |_ `  ( 4  /  (
x ^ 2 ) ) )  +  1 )  e.  NN  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  /  (
x ^ 2 ) ) )  +  1 ) ) )  ->  n  e.  NN )
3613, 35sylan 474 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  n  e.  NN )
3731, 36ffvelrnd 6023 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( F `  n )  e.  Y
)
3829, 37sseldd 3433 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( F `  n )  e.  X
)
39 metcl 21347 . . . . . . . . 9  |-  ( ( D  e.  ( Met `  X )  /\  ( F `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) )  e.  X  /\  ( F `
 n )  e.  X )  ->  (
( F `  (
( |_ `  (
4  /  ( x ^ 2 ) ) )  +  1 ) ) D ( F `
 n ) )  e.  RR )
4020, 34, 38, 39syl3anc 1268 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( ( F `
 ( ( |_
`  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) D ( F `  n
) )  e.  RR )
4140resqcld 12442 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( ( ( F `  ( ( |_ `  ( 4  /  ( x ^
2 ) ) )  +  1 ) ) D ( F `  n ) ) ^
2 )  e.  RR )
4232nnrpd 11339 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( ( |_
`  ( 4  / 
( x ^ 2 ) ) )  +  1 )  e.  RR+ )
4342rpreccld 11351 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( 1  / 
( ( |_ `  ( 4  /  (
x ^ 2 ) ) )  +  1 ) )  e.  RR+ )
44 rpmulcl 11324 . . . . . . . . 9  |-  ( ( 4  e.  RR+  /\  (
1  /  ( ( |_ `  ( 4  /  ( x ^
2 ) ) )  +  1 ) )  e.  RR+ )  ->  (
4  x.  ( 1  /  ( ( |_
`  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  e.  RR+ )
453, 43, 44sylancr 669 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( 4  x.  ( 1  /  (
( |_ `  (
4  /  ( x ^ 2 ) ) )  +  1 ) ) )  e.  RR+ )
4645rpred 11341 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( 4  x.  ( 1  /  (
( |_ `  (
4  /  ( x ^ 2 ) ) )  +  1 ) ) )  e.  RR )
477adantr 467 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( x ^
2 )  e.  RR+ )
4847rpred 11341 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( x ^
2 )  e.  RR )
49 minvecoOLD.m . . . . . . . 8  |-  M  =  ( -v `  U
)
50 minvecoOLD.n . . . . . . . 8  |-  N  =  ( normCV `  U )
5114ad2antrr 732 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  U  e.  CPreHil OLD )
5223ad2antrr 732 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  W  e.  ( ( SubSp `  U )  i^i  CBan ) )
53 minvecoOLD.a . . . . . . . . 9  |-  ( ph  ->  A  e.  X )
5453ad2antrr 732 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  A  e.  X
)
55 minvecoOLD.j . . . . . . . 8  |-  J  =  ( MetOpen `  D )
56 minvecoOLD.r . . . . . . . 8  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
57 minvecoOLD.s . . . . . . . 8  |-  S  =  sup ( R ,  RR ,  `'  <  )
5813nnrpd 11339 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 )  e.  RR+ )
5958rpreccld 11351 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1  /  ( ( |_
`  ( 4  / 
( x ^ 2 ) ) )  +  1 ) )  e.  RR+ )
6059adantr 467 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( 1  / 
( ( |_ `  ( 4  /  (
x ^ 2 ) ) )  +  1 ) )  e.  RR+ )
6160rpred 11341 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( 1  / 
( ( |_ `  ( 4  /  (
x ^ 2 ) ) )  +  1 ) )  e.  RR )
6260rpge0d 11345 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  0  <_  (
1  /  ( ( |_ `  ( 4  /  ( x ^
2 ) ) )  +  1 ) ) )
6330adantr 467 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  F : NN
--> Y )
6463ffvelrnda 6022 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  NN )  ->  ( F `  n )  e.  Y )
6536, 64syldan 473 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( F `  n )  e.  Y
)
66 minvecoOLD.1 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( A D ( F `
 n ) ) ^ 2 )  <_ 
( ( S ^
2 )  +  ( 1  /  n ) ) )
6766ralrimiva 2802 . . . . . . . . . 10  |-  ( ph  ->  A. n  e.  NN  ( ( A D ( F `  n
) ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) ) )
6867ad2antrr 732 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  A. n  e.  NN  ( ( A D ( F `  n
) ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) ) )
69 fveq2 5865 . . . . . . . . . . . . 13  |-  ( n  =  ( ( |_
`  ( 4  / 
( x ^ 2 ) ) )  +  1 )  ->  ( F `  n )  =  ( F `  ( ( |_ `  ( 4  /  (
x ^ 2 ) ) )  +  1 ) ) )
7069oveq2d 6306 . . . . . . . . . . . 12  |-  ( n  =  ( ( |_
`  ( 4  / 
( x ^ 2 ) ) )  +  1 )  ->  ( A D ( F `  n ) )  =  ( A D ( F `  ( ( |_ `  ( 4  /  ( x ^
2 ) ) )  +  1 ) ) ) )
7170oveq1d 6305 . . . . . . . . . . 11  |-  ( n  =  ( ( |_
`  ( 4  / 
( x ^ 2 ) ) )  +  1 )  ->  (
( A D ( F `  n ) ) ^ 2 )  =  ( ( A D ( F `  ( ( |_ `  ( 4  /  (
x ^ 2 ) ) )  +  1 ) ) ) ^
2 ) )
72 oveq2 6298 . . . . . . . . . . . 12  |-  ( n  =  ( ( |_
`  ( 4  / 
( x ^ 2 ) ) )  +  1 )  ->  (
1  /  n )  =  ( 1  / 
( ( |_ `  ( 4  /  (
x ^ 2 ) ) )  +  1 ) ) )
7372oveq2d 6306 . . . . . . . . . . 11  |-  ( n  =  ( ( |_
`  ( 4  / 
( x ^ 2 ) ) )  +  1 )  ->  (
( S ^ 2 )  +  ( 1  /  n ) )  =  ( ( S ^ 2 )  +  ( 1  /  (
( |_ `  (
4  /  ( x ^ 2 ) ) )  +  1 ) ) ) )
7471, 73breq12d 4415 . . . . . . . . . 10  |-  ( n  =  ( ( |_
`  ( 4  / 
( x ^ 2 ) ) )  +  1 )  ->  (
( ( A D ( F `  n
) ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) )  <->  ( ( A D ( F `  ( ( |_ `  ( 4  /  (
x ^ 2 ) ) )  +  1 ) ) ) ^
2 )  <_  (
( S ^ 2 )  +  ( 1  /  ( ( |_
`  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) ) ) )
7574rspcv 3146 . . . . . . . . 9  |-  ( ( ( |_ `  (
4  /  ( x ^ 2 ) ) )  +  1 )  e.  NN  ->  ( A. n  e.  NN  ( ( A D ( F `  n
) ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) )  ->  (
( A D ( F `  ( ( |_ `  ( 4  /  ( x ^
2 ) ) )  +  1 ) ) ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  (
( |_ `  (
4  /  ( x ^ 2 ) ) )  +  1 ) ) ) ) )
7632, 68, 75sylc 62 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( ( A D ( F `  ( ( |_ `  ( 4  /  (
x ^ 2 ) ) )  +  1 ) ) ) ^
2 )  <_  (
( S ^ 2 )  +  ( 1  /  ( ( |_
`  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) ) )
7729, 65sseldd 3433 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( F `  n )  e.  X
)
78 metcl 21347 . . . . . . . . . . 11  |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  ( F `  n )  e.  X )  ->  ( A D ( F `  n ) )  e.  RR )
7920, 54, 77, 78syl3anc 1268 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( A D ( F `  n
) )  e.  RR )
8079resqcld 12442 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( ( A D ( F `  n ) ) ^
2 )  e.  RR )
8116, 49, 50, 25, 14, 23, 53, 17, 55, 56minvecolem1 26516 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( R  C_  RR  /\  R  =/=  (/)  /\  A. w  e.  R  0  <_  w ) )
82 0re 9643 . . . . . . . . . . . . . . . 16  |-  0  e.  RR
83 breq1 4405 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  0  ->  (
x  <_  w  <->  0  <_  w ) )
8483ralbidv 2827 . . . . . . . . . . . . . . . . 17  |-  ( x  =  0  ->  ( A. w  e.  R  x  <_  w  <->  A. w  e.  R  0  <_  w ) )
8584rspcev 3150 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  RR  /\  A. w  e.  R  0  <_  w )  ->  E. x  e.  RR  A. w  e.  R  x  <_  w )
8682, 85mpan 676 . . . . . . . . . . . . . . 15  |-  ( A. w  e.  R  0  <_  w  ->  E. x  e.  RR  A. w  e.  R  x  <_  w
)
87863anim3i 1196 . . . . . . . . . . . . . 14  |-  ( ( R  C_  RR  /\  R  =/=  (/)  /\  A. w  e.  R  0  <_  w )  ->  ( R  C_  RR  /\  R  =/=  (/)  /\  E. x  e.  RR  A. w  e.  R  x  <_  w
) )
88 infmrclOLD 10593 . . . . . . . . . . . . . 14  |-  ( ( R  C_  RR  /\  R  =/=  (/)  /\  E. x  e.  RR  A. w  e.  R  x  <_  w
)  ->  sup ( R ,  RR ,  `'  <  )  e.  RR )
8981, 87, 883syl 18 . . . . . . . . . . . . 13  |-  ( ph  ->  sup ( R ,  RR ,  `'  <  )  e.  RR )
9057, 89syl5eqel 2533 . . . . . . . . . . . 12  |-  ( ph  ->  S  e.  RR )
9190resqcld 12442 . . . . . . . . . . 11  |-  ( ph  ->  ( S ^ 2 )  e.  RR )
9291ad2antrr 732 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( S ^
2 )  e.  RR )
9336nnrecred 10655 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( 1  /  n )  e.  RR )
9492, 93readdcld 9670 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( ( S ^ 2 )  +  ( 1  /  n
) )  e.  RR )
9592, 61readdcld 9670 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( ( S ^ 2 )  +  ( 1  /  (
( |_ `  (
4  /  ( x ^ 2 ) ) )  +  1 ) ) )  e.  RR )
9666adantlr 721 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  NN )  ->  (
( A D ( F `  n ) ) ^ 2 )  <_  ( ( S ^ 2 )  +  ( 1  /  n
) ) )
9736, 96syldan 473 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( ( A D ( F `  n ) ) ^
2 )  <_  (
( S ^ 2 )  +  ( 1  /  n ) ) )
98 eluzle 11171 . . . . . . . . . . . 12  |-  ( n  e.  ( ZZ>= `  (
( |_ `  (
4  /  ( x ^ 2 ) ) )  +  1 ) )  ->  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 )  <_  n
)
9998adantl 468 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( ( |_
`  ( 4  / 
( x ^ 2 ) ) )  +  1 )  <_  n
)
10042rpregt0d 11347 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( ( ( |_ `  ( 4  /  ( x ^
2 ) ) )  +  1 )  e.  RR  /\  0  < 
( ( |_ `  ( 4  /  (
x ^ 2 ) ) )  +  1 ) ) )
101 nnre 10616 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  n  e.  RR )
102 nngt0 10638 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  0  <  n )
103101, 102jca 535 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  (
n  e.  RR  /\  0  <  n ) )
10436, 103syl 17 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( n  e.  RR  /\  0  < 
n ) )
105 lerec 10489 . . . . . . . . . . . 12  |-  ( ( ( ( ( |_
`  ( 4  / 
( x ^ 2 ) ) )  +  1 )  e.  RR  /\  0  <  ( ( |_ `  ( 4  /  ( x ^
2 ) ) )  +  1 ) )  /\  ( n  e.  RR  /\  0  < 
n ) )  -> 
( ( ( |_
`  ( 4  / 
( x ^ 2 ) ) )  +  1 )  <_  n  <->  ( 1  /  n )  <_  ( 1  / 
( ( |_ `  ( 4  /  (
x ^ 2 ) ) )  +  1 ) ) ) )
106100, 104, 105syl2anc 667 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( ( ( |_ `  ( 4  /  ( x ^
2 ) ) )  +  1 )  <_  n 
<->  ( 1  /  n
)  <_  ( 1  /  ( ( |_
`  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) ) )
10799, 106mpbid 214 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( 1  /  n )  <_  (
1  /  ( ( |_ `  ( 4  /  ( x ^
2 ) ) )  +  1 ) ) )
10893, 61, 92, 107leadd2dd 10228 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( ( S ^ 2 )  +  ( 1  /  n
) )  <_  (
( S ^ 2 )  +  ( 1  /  ( ( |_
`  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) ) )
10980, 94, 95, 97, 108letrd 9792 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( ( A D ( F `  n ) ) ^
2 )  <_  (
( S ^ 2 )  +  ( 1  /  ( ( |_
`  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) ) )
11016, 49, 50, 25, 51, 52, 54, 17, 55, 56, 57, 61, 62, 33, 65, 76, 109minvecolem2OLD 26527 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( ( ( F `  ( ( |_ `  ( 4  /  ( x ^
2 ) ) )  +  1 ) ) D ( F `  n ) ) ^
2 )  <_  (
4  x.  ( 1  /  ( ( |_
`  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) ) )
111 rpdivcl 11325 . . . . . . . . . 10  |-  ( ( ( x ^ 2 )  e.  RR+  /\  4  e.  RR+ )  ->  (
( x ^ 2 )  /  4 )  e.  RR+ )
11247, 3, 111sylancl 668 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( ( x ^ 2 )  / 
4 )  e.  RR+ )
113 rpcnne0 11319 . . . . . . . . . . . 12  |-  ( ( x ^ 2 )  e.  RR+  ->  ( ( x ^ 2 )  e.  CC  /\  (
x ^ 2 )  =/=  0 ) )
11447, 113syl 17 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( ( x ^ 2 )  e.  CC  /\  ( x ^ 2 )  =/=  0 ) )
115 rpcnne0 11319 . . . . . . . . . . . 12  |-  ( 4  e.  RR+  ->  ( 4  e.  CC  /\  4  =/=  0 ) )
1163, 115ax-mp 5 . . . . . . . . . . 11  |-  ( 4  e.  CC  /\  4  =/=  0 )
117 recdiv 10313 . . . . . . . . . . 11  |-  ( ( ( ( x ^
2 )  e.  CC  /\  ( x ^ 2 )  =/=  0 )  /\  ( 4  e.  CC  /\  4  =/=  0 ) )  -> 
( 1  /  (
( x ^ 2 )  /  4 ) )  =  ( 4  /  ( x ^
2 ) ) )
118114, 116, 117sylancl 668 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( 1  / 
( ( x ^
2 )  /  4
) )  =  ( 4  /  ( x ^ 2 ) ) )
1199adantr 467 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( 4  / 
( x ^ 2 ) )  e.  RR+ )
120119rpred 11341 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( 4  / 
( x ^ 2 ) )  e.  RR )
121 flltp1 12036 . . . . . . . . . . 11  |-  ( ( 4  /  ( x ^ 2 ) )  e.  RR  ->  (
4  /  ( x ^ 2 ) )  <  ( ( |_
`  ( 4  / 
( x ^ 2 ) ) )  +  1 ) )
122120, 121syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( 4  / 
( x ^ 2 ) )  <  (
( |_ `  (
4  /  ( x ^ 2 ) ) )  +  1 ) )
123118, 122eqbrtrd 4423 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( 1  / 
( ( x ^
2 )  /  4
) )  <  (
( |_ `  (
4  /  ( x ^ 2 ) ) )  +  1 ) )
124112, 42, 123ltrec1d 11361 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( 1  / 
( ( |_ `  ( 4  /  (
x ^ 2 ) ) )  +  1 ) )  <  (
( x ^ 2 )  /  4 ) )
1251, 2pm3.2i 457 . . . . . . . . . 10  |-  ( 4  e.  RR  /\  0  <  4 )
126 ltmuldiv2 10479 . . . . . . . . . 10  |-  ( ( ( 1  /  (
( |_ `  (
4  /  ( x ^ 2 ) ) )  +  1 ) )  e.  RR  /\  ( x ^ 2 )  e.  RR  /\  ( 4  e.  RR  /\  0  <  4 ) )  ->  ( (
4  x.  ( 1  /  ( ( |_
`  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  <  ( x ^
2 )  <->  ( 1  /  ( ( |_
`  ( 4  / 
( x ^ 2 ) ) )  +  1 ) )  < 
( ( x ^
2 )  /  4
) ) )
127125, 126mp3an3 1353 . . . . . . . . 9  |-  ( ( ( 1  /  (
( |_ `  (
4  /  ( x ^ 2 ) ) )  +  1 ) )  e.  RR  /\  ( x ^ 2 )  e.  RR )  ->  ( ( 4  x.  ( 1  / 
( ( |_ `  ( 4  /  (
x ^ 2 ) ) )  +  1 ) ) )  < 
( x ^ 2 )  <->  ( 1  / 
( ( |_ `  ( 4  /  (
x ^ 2 ) ) )  +  1 ) )  <  (
( x ^ 2 )  /  4 ) ) )
12861, 48, 127syl2anc 667 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( ( 4  x.  ( 1  / 
( ( |_ `  ( 4  /  (
x ^ 2 ) ) )  +  1 ) ) )  < 
( x ^ 2 )  <->  ( 1  / 
( ( |_ `  ( 4  /  (
x ^ 2 ) ) )  +  1 ) )  <  (
( x ^ 2 )  /  4 ) ) )
129124, 128mpbird 236 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( 4  x.  ( 1  /  (
( |_ `  (
4  /  ( x ^ 2 ) ) )  +  1 ) ) )  <  (
x ^ 2 ) )
13041, 46, 48, 110, 129lelttrd 9793 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( ( ( F `  ( ( |_ `  ( 4  /  ( x ^
2 ) ) )  +  1 ) ) D ( F `  n ) ) ^
2 )  <  (
x ^ 2 ) )
131 metge0 21360 . . . . . . . 8  |-  ( ( D  e.  ( Met `  X )  /\  ( F `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) )  e.  X  /\  ( F `
 n )  e.  X )  ->  0  <_  ( ( F `  ( ( |_ `  ( 4  /  (
x ^ 2 ) ) )  +  1 ) ) D ( F `  n ) ) )
13220, 34, 38, 131syl3anc 1268 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  0  <_  (
( F `  (
( |_ `  (
4  /  ( x ^ 2 ) ) )  +  1 ) ) D ( F `
 n ) ) )
133 rprege0 11316 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <_  x ) )
134133ad2antlr 733 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( x  e.  RR  /\  0  <_  x ) )
135 lt2sq 12348 . . . . . . 7  |-  ( ( ( ( ( F `
 ( ( |_
`  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) D ( F `  n
) )  e.  RR  /\  0  <_  ( ( F `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) D ( F `  n
) ) )  /\  ( x  e.  RR  /\  0  <_  x )
)  ->  ( (
( F `  (
( |_ `  (
4  /  ( x ^ 2 ) ) )  +  1 ) ) D ( F `
 n ) )  <  x  <->  ( (
( F `  (
( |_ `  (
4  /  ( x ^ 2 ) ) )  +  1 ) ) D ( F `
 n ) ) ^ 2 )  < 
( x ^ 2 ) ) )
13640, 132, 134, 135syl21anc 1267 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( ( ( F `  ( ( |_ `  ( 4  /  ( x ^
2 ) ) )  +  1 ) ) D ( F `  n ) )  < 
x  <->  ( ( ( F `  ( ( |_ `  ( 4  /  ( x ^
2 ) ) )  +  1 ) ) D ( F `  n ) ) ^
2 )  <  (
x ^ 2 ) ) )
137130, 136mpbird 236 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )  ->  ( ( F `
 ( ( |_
`  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) D ( F `  n
) )  <  x
)
138137ralrimiva 2802 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  A. n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) ( ( F `  (
( |_ `  (
4  /  ( x ^ 2 ) ) )  +  1 ) ) D ( F `
 n ) )  <  x )
139 fveq2 5865 . . . . . 6  |-  ( j  =  ( ( |_
`  ( 4  / 
( x ^ 2 ) ) )  +  1 )  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) )
140 fveq2 5865 . . . . . . . 8  |-  ( j  =  ( ( |_
`  ( 4  / 
( x ^ 2 ) ) )  +  1 )  ->  ( F `  j )  =  ( F `  ( ( |_ `  ( 4  /  (
x ^ 2 ) ) )  +  1 ) ) )
141140oveq1d 6305 . . . . . . 7  |-  ( j  =  ( ( |_
`  ( 4  / 
( x ^ 2 ) ) )  +  1 )  ->  (
( F `  j
) D ( F `
 n ) )  =  ( ( F `
 ( ( |_
`  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) D ( F `  n
) ) )
142141breq1d 4412 . . . . . 6  |-  ( j  =  ( ( |_
`  ( 4  / 
( x ^ 2 ) ) )  +  1 )  ->  (
( ( F `  j ) D ( F `  n ) )  <  x  <->  ( ( F `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) D ( F `  n
) )  <  x
) )
143139, 142raleqbidv 3001 . . . . 5  |-  ( j  =  ( ( |_
`  ( 4  / 
( x ^ 2 ) ) )  +  1 )  ->  ( A. n  e.  ( ZZ>=
`  j ) ( ( F `  j
) D ( F `
 n ) )  <  x  <->  A. n  e.  ( ZZ>= `  ( ( |_ `  ( 4  / 
( x ^ 2 ) ) )  +  1 ) ) ( ( F `  (
( |_ `  (
4  /  ( x ^ 2 ) ) )  +  1 ) ) D ( F `
 n ) )  <  x ) )
144143rspcev 3150 . . . 4  |-  ( ( ( ( |_ `  ( 4  /  (
x ^ 2 ) ) )  +  1 )  e.  NN  /\  A. n  e.  ( ZZ>= `  ( ( |_ `  ( 4  /  (
x ^ 2 ) ) )  +  1 ) ) ( ( F `  ( ( |_ `  ( 4  /  ( x ^
2 ) ) )  +  1 ) ) D ( F `  n ) )  < 
x )  ->  E. j  e.  NN  A. n  e.  ( ZZ>= `  j )
( ( F `  j ) D ( F `  n ) )  <  x )
14513, 138, 144syl2anc 667 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. j  e.  NN  A. n  e.  ( ZZ>= `  j )
( ( F `  j ) D ( F `  n ) )  <  x )
146145ralrimiva 2802 . 2  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  NN  A. n  e.  ( ZZ>= `  j ) ( ( F `  j ) D ( F `  n ) )  < 
x )
147 nnuz 11194 . . 3  |-  NN  =  ( ZZ>= `  1 )
14816, 17imsxmet 26324 . . . 4  |-  ( U  e.  NrmCVec  ->  D  e.  ( *Met `  X
) )
14914, 15, 1483syl 18 . . 3  |-  ( ph  ->  D  e.  ( *Met `  X ) )
150 1zzd 10968 . . 3  |-  ( ph  ->  1  e.  ZZ )
151 eqidd 2452 . . 3  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n )  =  ( F `  n
) )
152 eqidd 2452 . . 3  |-  ( (
ph  /\  j  e.  NN )  ->  ( F `
 j )  =  ( F `  j
) )
15330, 28fssd 5738 . . 3  |-  ( ph  ->  F : NN --> X )
154147, 149, 150, 151, 152, 153iscauf 22250 . 2  |-  ( ph  ->  ( F  e.  ( Cau `  D )  <->  A. x  e.  RR+  E. j  e.  NN  A. n  e.  ( ZZ>= `  j )
( ( F `  j ) D ( F `  n ) )  <  x ) )
155146, 154mpbird 236 1  |-  ( ph  ->  F  e.  ( Cau `  D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 985    = wceq 1444    e. wcel 1887    =/= wne 2622   A.wral 2737   E.wrex 2738    i^i cin 3403    C_ wss 3404   (/)c0 3731   class class class wbr 4402    |-> cmpt 4461   `'ccnv 4833   ran crn 4835   -->wf 5578   ` cfv 5582  (class class class)co 6290   supcsup 7954   CCcc 9537   RRcr 9538   0cc0 9539   1c1 9540    + caddc 9542    x. cmul 9544    < clt 9675    <_ cle 9676    / cdiv 10269   NNcn 10609   2c2 10659   4c4 10661   NN0cn0 10869   ZZcz 10937   ZZ>=cuz 11159   RR+crp 11302   |_cfl 12026   ^cexp 12272   *Metcxmt 18955   Metcme 18956   MetOpencmopn 18960   Caucca 22223   NrmCVeccnv 26203   BaseSetcba 26205   -vcnsb 26208   normCVcnmcv 26209   IndMetcims 26210   SubSpcss 26360   CPreHil OLDccphlo 26453   CBanccbn 26504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617  ax-addf 9618  ax-mulf 9619
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-isom 5591  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-om 6693  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-er 7363  df-map 7474  df-pm 7475  df-en 7570  df-dom 7571  df-sdom 7572  df-sup 7956  df-inf 7957  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-n0 10870  df-z 10938  df-uz 11160  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-fl 12028  df-seq 12214  df-exp 12273  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-psmet 18962  df-xmet 18963  df-met 18964  df-bl 18965  df-cau 22226  df-grpo 25919  df-gid 25920  df-ginv 25921  df-gdiv 25922  df-ablo 26010  df-vc 26165  df-nv 26211  df-va 26214  df-ba 26215  df-sm 26216  df-0v 26217  df-vs 26218  df-nmcv 26219  df-ims 26220  df-ssp 26361  df-ph 26454  df-cbn 26505
This theorem is referenced by:  minvecolem4aOLD  26529
  Copyright terms: Public domain W3C validator