MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem2OLD Structured version   Visualization version   Unicode version

Theorem minvecolem2OLD 26520
Description: Lemma for minvecoOLD 26529. Any two points  K and 
L in  Y are close to each other if they are close to the infimum of distance to  A. (Contributed by Mario Carneiro, 9-May-2014.) Obsolete version of minvecolem2 26510 as of 4-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
minvecoOLD.x  |-  X  =  ( BaseSet `  U )
minvecoOLD.m  |-  M  =  ( -v `  U
)
minvecoOLD.n  |-  N  =  ( normCV `  U )
minvecoOLD.y  |-  Y  =  ( BaseSet `  W )
minvecoOLD.u  |-  ( ph  ->  U  e.  CPreHil OLD )
minvecoOLD.w  |-  ( ph  ->  W  e.  ( (
SubSp `  U )  i^i 
CBan ) )
minvecoOLD.a  |-  ( ph  ->  A  e.  X )
minvecoOLD.d  |-  D  =  ( IndMet `  U )
minvecoOLD.j  |-  J  =  ( MetOpen `  D )
minvecoOLD.r  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
minvecoOLD.s  |-  S  =  sup ( R ,  RR ,  `'  <  )
minvecolem2OLD.1  |-  ( ph  ->  B  e.  RR )
minvecolem2OLD.2  |-  ( ph  ->  0  <_  B )
minvecolem2OLD.3  |-  ( ph  ->  K  e.  Y )
minvecolem2OLD.4  |-  ( ph  ->  L  e.  Y )
minvecolem2OLD.5  |-  ( ph  ->  ( ( A D K ) ^ 2 )  <_  ( ( S ^ 2 )  +  B ) )
minvecolem2OLD.6  |-  ( ph  ->  ( ( A D L ) ^ 2 )  <_  ( ( S ^ 2 )  +  B ) )
Assertion
Ref Expression
minvecolem2OLD  |-  ( ph  ->  ( ( K D L ) ^ 2 )  <_  ( 4  x.  B ) )
Distinct variable groups:    y, J    y, K    y, L    y, M    y, N    ph, y    y, S    y, A    y, D    y, U    y, W    y, Y
Allowed substitution hints:    B( y)    R( y)    X( y)

Proof of Theorem minvecolem2OLD
Dummy variables  x  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4re 10683 . . . . . 6  |-  4  e.  RR
2 minvecoOLD.s . . . . . . . 8  |-  S  =  sup ( R ,  RR ,  `'  <  )
3 minvecoOLD.x . . . . . . . . . . 11  |-  X  =  ( BaseSet `  U )
4 minvecoOLD.m . . . . . . . . . . 11  |-  M  =  ( -v `  U
)
5 minvecoOLD.n . . . . . . . . . . 11  |-  N  =  ( normCV `  U )
6 minvecoOLD.y . . . . . . . . . . 11  |-  Y  =  ( BaseSet `  W )
7 minvecoOLD.u . . . . . . . . . . 11  |-  ( ph  ->  U  e.  CPreHil OLD )
8 minvecoOLD.w . . . . . . . . . . 11  |-  ( ph  ->  W  e.  ( (
SubSp `  U )  i^i 
CBan ) )
9 minvecoOLD.a . . . . . . . . . . 11  |-  ( ph  ->  A  e.  X )
10 minvecoOLD.d . . . . . . . . . . 11  |-  D  =  ( IndMet `  U )
11 minvecoOLD.j . . . . . . . . . . 11  |-  J  =  ( MetOpen `  D )
12 minvecoOLD.r . . . . . . . . . . 11  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
133, 4, 5, 6, 7, 8, 9, 10, 11, 12minvecolem1 26509 . . . . . . . . . 10  |-  ( ph  ->  ( R  C_  RR  /\  R  =/=  (/)  /\  A. w  e.  R  0  <_  w ) )
1413simp1d 1019 . . . . . . . . 9  |-  ( ph  ->  R  C_  RR )
1513simp2d 1020 . . . . . . . . 9  |-  ( ph  ->  R  =/=  (/) )
16 0re 9640 . . . . . . . . . 10  |-  0  e.  RR
1713simp3d 1021 . . . . . . . . . 10  |-  ( ph  ->  A. w  e.  R 
0  <_  w )
18 breq1 4404 . . . . . . . . . . . 12  |-  ( x  =  0  ->  (
x  <_  w  <->  0  <_  w ) )
1918ralbidv 2826 . . . . . . . . . . 11  |-  ( x  =  0  ->  ( A. w  e.  R  x  <_  w  <->  A. w  e.  R  0  <_  w ) )
2019rspcev 3149 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  A. w  e.  R  0  <_  w )  ->  E. x  e.  RR  A. w  e.  R  x  <_  w )
2116, 17, 20sylancr 668 . . . . . . . . 9  |-  ( ph  ->  E. x  e.  RR  A. w  e.  R  x  <_  w )
22 infmrclOLD 10590 . . . . . . . . 9  |-  ( ( R  C_  RR  /\  R  =/=  (/)  /\  E. x  e.  RR  A. w  e.  R  x  <_  w
)  ->  sup ( R ,  RR ,  `'  <  )  e.  RR )
2314, 15, 21, 22syl3anc 1267 . . . . . . . 8  |-  ( ph  ->  sup ( R ,  RR ,  `'  <  )  e.  RR )
242, 23syl5eqel 2532 . . . . . . 7  |-  ( ph  ->  S  e.  RR )
2524resqcld 12439 . . . . . 6  |-  ( ph  ->  ( S ^ 2 )  e.  RR )
26 remulcl 9621 . . . . . 6  |-  ( ( 4  e.  RR  /\  ( S ^ 2 )  e.  RR )  -> 
( 4  x.  ( S ^ 2 ) )  e.  RR )
271, 25, 26sylancr 668 . . . . 5  |-  ( ph  ->  ( 4  x.  ( S ^ 2 ) )  e.  RR )
28 phnv 26448 . . . . . . . . 9  |-  ( U  e.  CPreHil OLD  ->  U  e.  NrmCVec )
297, 28syl 17 . . . . . . . 8  |-  ( ph  ->  U  e.  NrmCVec )
303, 10imsmet 26316 . . . . . . . 8  |-  ( U  e.  NrmCVec  ->  D  e.  ( Met `  X ) )
3129, 30syl 17 . . . . . . 7  |-  ( ph  ->  D  e.  ( Met `  X ) )
32 inss1 3651 . . . . . . . . . 10  |-  ( (
SubSp `  U )  i^i 
CBan )  C_  ( SubSp `  U )
3332, 8sseldi 3429 . . . . . . . . 9  |-  ( ph  ->  W  e.  ( SubSp `  U ) )
34 eqid 2450 . . . . . . . . . 10  |-  ( SubSp `  U )  =  (
SubSp `  U )
353, 6, 34sspba 26359 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  W  e.  ( SubSp `  U )
)  ->  Y  C_  X
)
3629, 33, 35syl2anc 666 . . . . . . . 8  |-  ( ph  ->  Y  C_  X )
37 minvecolem2OLD.3 . . . . . . . 8  |-  ( ph  ->  K  e.  Y )
3836, 37sseldd 3432 . . . . . . 7  |-  ( ph  ->  K  e.  X )
39 minvecolem2OLD.4 . . . . . . . 8  |-  ( ph  ->  L  e.  Y )
4036, 39sseldd 3432 . . . . . . 7  |-  ( ph  ->  L  e.  X )
41 metcl 21340 . . . . . . 7  |-  ( ( D  e.  ( Met `  X )  /\  K  e.  X  /\  L  e.  X )  ->  ( K D L )  e.  RR )
4231, 38, 40, 41syl3anc 1267 . . . . . 6  |-  ( ph  ->  ( K D L )  e.  RR )
4342resqcld 12439 . . . . 5  |-  ( ph  ->  ( ( K D L ) ^ 2 )  e.  RR )
4427, 43readdcld 9667 . . . 4  |-  ( ph  ->  ( ( 4  x.  ( S ^ 2 ) )  +  ( ( K D L ) ^ 2 ) )  e.  RR )
45 ax-1cn 9594 . . . . . . . . . . . . 13  |-  1  e.  CC
46 halfcl 10835 . . . . . . . . . . . . 13  |-  ( 1  e.  CC  ->  (
1  /  2 )  e.  CC )
4745, 46mp1i 13 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1  /  2
)  e.  CC )
48 eqid 2450 . . . . . . . . . . . . . . 15  |-  ( +v
`  U )  =  ( +v `  U
)
49 eqid 2450 . . . . . . . . . . . . . . 15  |-  ( +v
`  W )  =  ( +v `  W
)
506, 48, 49, 34sspgval 26361 . . . . . . . . . . . . . 14  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  ( SubSp `  U ) )  /\  ( K  e.  Y  /\  L  e.  Y
) )  ->  ( K ( +v `  W ) L )  =  ( K ( +v `  U ) L ) )
5129, 33, 37, 39, 50syl22anc 1268 . . . . . . . . . . . . 13  |-  ( ph  ->  ( K ( +v
`  W ) L )  =  ( K ( +v `  U
) L ) )
5234sspnv 26358 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  NrmCVec  /\  W  e.  ( SubSp `  U )
)  ->  W  e.  NrmCVec )
5329, 33, 52syl2anc 666 . . . . . . . . . . . . . 14  |-  ( ph  ->  W  e.  NrmCVec )
546, 49nvgcl 26232 . . . . . . . . . . . . . 14  |-  ( ( W  e.  NrmCVec  /\  K  e.  Y  /\  L  e.  Y )  ->  ( K ( +v `  W ) L )  e.  Y )
5553, 37, 39, 54syl3anc 1267 . . . . . . . . . . . . 13  |-  ( ph  ->  ( K ( +v
`  W ) L )  e.  Y )
5651, 55eqeltrrd 2529 . . . . . . . . . . . 12  |-  ( ph  ->  ( K ( +v
`  U ) L )  e.  Y )
57 eqid 2450 . . . . . . . . . . . . 13  |-  ( .sOLD `  U )  =  ( .sOLD `  U )
58 eqid 2450 . . . . . . . . . . . . 13  |-  ( .sOLD `  W )  =  ( .sOLD `  W )
596, 57, 58, 34sspsval 26363 . . . . . . . . . . . 12  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  ( SubSp `  U ) )  /\  ( ( 1  / 
2 )  e.  CC  /\  ( K ( +v
`  U ) L )  e.  Y ) )  ->  ( (
1  /  2 ) ( .sOLD `  W ) ( K ( +v `  U
) L ) )  =  ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) )
6029, 33, 47, 56, 59syl22anc 1268 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 1  / 
2 ) ( .sOLD `  W ) ( K ( +v
`  U ) L ) )  =  ( ( 1  /  2
) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) )
616, 58nvscl 26240 . . . . . . . . . . . 12  |-  ( ( W  e.  NrmCVec  /\  (
1  /  2 )  e.  CC  /\  ( K ( +v `  U ) L )  e.  Y )  -> 
( ( 1  / 
2 ) ( .sOLD `  W ) ( K ( +v
`  U ) L ) )  e.  Y
)
6253, 47, 56, 61syl3anc 1267 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 1  / 
2 ) ( .sOLD `  W ) ( K ( +v
`  U ) L ) )  e.  Y
)
6360, 62eqeltrrd 2529 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1  / 
2 ) ( .sOLD `  U ) ( K ( +v
`  U ) L ) )  e.  Y
)
6436, 63sseldd 3432 . . . . . . . . 9  |-  ( ph  ->  ( ( 1  / 
2 ) ( .sOLD `  U ) ( K ( +v
`  U ) L ) )  e.  X
)
653, 4nvmcl 26261 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  (
( 1  /  2
) ( .sOLD `  U ) ( K ( +v `  U
) L ) )  e.  X )  -> 
( A M ( ( 1  /  2
) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) )  e.  X )
6629, 9, 64, 65syl3anc 1267 . . . . . . . 8  |-  ( ph  ->  ( A M ( ( 1  /  2
) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) )  e.  X )
673, 5nvcl 26281 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) )  e.  X )  -> 
( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) )  e.  RR )
6829, 66, 67syl2anc 666 . . . . . . 7  |-  ( ph  ->  ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) )  e.  RR )
6968resqcld 12439 . . . . . 6  |-  ( ph  ->  ( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) ^ 2 )  e.  RR )
70 remulcl 9621 . . . . . 6  |-  ( ( 4  e.  RR  /\  ( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) ^ 2 )  e.  RR )  ->  ( 4  x.  ( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) ^ 2 ) )  e.  RR )
711, 69, 70sylancr 668 . . . . 5  |-  ( ph  ->  ( 4  x.  (
( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) ^ 2 ) )  e.  RR )
7271, 43readdcld 9667 . . . 4  |-  ( ph  ->  ( ( 4  x.  ( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) ^ 2 ) )  +  ( ( K D L ) ^ 2 ) )  e.  RR )
73 minvecolem2OLD.1 . . . . . 6  |-  ( ph  ->  B  e.  RR )
7425, 73readdcld 9667 . . . . 5  |-  ( ph  ->  ( ( S ^
2 )  +  B
)  e.  RR )
75 remulcl 9621 . . . . 5  |-  ( ( 4  e.  RR  /\  ( ( S ^
2 )  +  B
)  e.  RR )  ->  ( 4  x.  ( ( S ^
2 )  +  B
) )  e.  RR )
761, 74, 75sylancr 668 . . . 4  |-  ( ph  ->  ( 4  x.  (
( S ^ 2 )  +  B ) )  e.  RR )
7716a1i 11 . . . . . . . . . 10  |-  ( ph  ->  0  e.  RR )
78 infmrgelbOLD 10592 . . . . . . . . . 10  |-  ( ( ( R  C_  RR  /\  R  =/=  (/)  /\  E. x  e.  RR  A. w  e.  R  x  <_  w )  /\  0  e.  RR )  ->  (
0  <_  sup ( R ,  RR ,  `'  <  )  <->  A. w  e.  R  0  <_  w ) )
7914, 15, 21, 77, 78syl31anc 1270 . . . . . . . . 9  |-  ( ph  ->  ( 0  <_  sup ( R ,  RR ,  `'  <  )  <->  A. w  e.  R  0  <_  w ) )
8017, 79mpbird 236 . . . . . . . 8  |-  ( ph  ->  0  <_  sup ( R ,  RR ,  `'  <  ) )
8180, 2syl6breqr 4442 . . . . . . 7  |-  ( ph  ->  0  <_  S )
82 eqid 2450 . . . . . . . . . . . 12  |-  ( N `
 ( A M ( ( 1  / 
2 ) ( .sOLD `  U ) ( K ( +v
`  U ) L ) ) ) )  =  ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) )
83 oveq2 6296 . . . . . . . . . . . . . . 15  |-  ( y  =  ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) )  -> 
( A M y )  =  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) )
8483fveq2d 5867 . . . . . . . . . . . . . 14  |-  ( y  =  ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) )  -> 
( N `  ( A M y ) )  =  ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) )
8584eqeq2d 2460 . . . . . . . . . . . . 13  |-  ( y  =  ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) )  -> 
( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) )  =  ( N `  ( A M y ) )  <-> 
( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) )  =  ( N `
 ( A M ( ( 1  / 
2 ) ( .sOLD `  U ) ( K ( +v
`  U ) L ) ) ) ) ) )
8685rspcev 3149 . . . . . . . . . . . 12  |-  ( ( ( ( 1  / 
2 ) ( .sOLD `  U ) ( K ( +v
`  U ) L ) )  e.  Y  /\  ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) )  =  ( N `
 ( A M ( ( 1  / 
2 ) ( .sOLD `  U ) ( K ( +v
`  U ) L ) ) ) ) )  ->  E. y  e.  Y  ( N `  ( A M ( ( 1  /  2
) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) )  =  ( N `  ( A M y ) ) )
8763, 82, 86sylancl 667 . . . . . . . . . . 11  |-  ( ph  ->  E. y  e.  Y  ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) )  =  ( N `
 ( A M y ) ) )
88 eqid 2450 . . . . . . . . . . . 12  |-  ( y  e.  Y  |->  ( N `
 ( A M y ) ) )  =  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
89 fvex 5873 . . . . . . . . . . . 12  |-  ( N `
 ( A M y ) )  e. 
_V
9088, 89elrnmpti 5084 . . . . . . . . . . 11  |-  ( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) )  e.  ran  (
y  e.  Y  |->  ( N `  ( A M y ) ) )  <->  E. y  e.  Y  ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) )  =  ( N `
 ( A M y ) ) )
9187, 90sylibr 216 . . . . . . . . . 10  |-  ( ph  ->  ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) )  e.  ran  (
y  e.  Y  |->  ( N `  ( A M y ) ) ) )
9291, 12syl6eleqr 2539 . . . . . . . . 9  |-  ( ph  ->  ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) )  e.  R )
93 infmrlbOLD 10594 . . . . . . . . 9  |-  ( ( R  C_  RR  /\  E. x  e.  RR  A. w  e.  R  x  <_  w  /\  ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) )  e.  R
)  ->  sup ( R ,  RR ,  `'  <  )  <_  ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) )
9414, 21, 92, 93syl3anc 1267 . . . . . . . 8  |-  ( ph  ->  sup ( R ,  RR ,  `'  <  )  <_  ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) )
952, 94syl5eqbr 4435 . . . . . . 7  |-  ( ph  ->  S  <_  ( N `  ( A M ( ( 1  /  2
) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) )
96 le2sq2 12347 . . . . . . 7  |-  ( ( ( S  e.  RR  /\  0  <_  S )  /\  ( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) )  e.  RR  /\  S  <_  ( N `  ( A M ( ( 1  /  2
) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) ) )  ->  ( S ^
2 )  <_  (
( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) ^ 2 ) )
9724, 81, 68, 95, 96syl22anc 1268 . . . . . 6  |-  ( ph  ->  ( S ^ 2 )  <_  ( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) ^ 2 ) )
98 4pos 10702 . . . . . . . . 9  |-  0  <  4
991, 98pm3.2i 457 . . . . . . . 8  |-  ( 4  e.  RR  /\  0  <  4 )
100 lemul2 10455 . . . . . . . 8  |-  ( ( ( S ^ 2 )  e.  RR  /\  ( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) ^ 2 )  e.  RR  /\  ( 4  e.  RR  /\  0  <  4 ) )  ->  ( ( S ^ 2 )  <_ 
( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) ^ 2 )  <->  ( 4  x.  ( S ^ 2 ) )  <_  (
4  x.  ( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) ^ 2 ) ) ) )
10199, 100mp3an3 1352 . . . . . . 7  |-  ( ( ( S ^ 2 )  e.  RR  /\  ( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) ^ 2 )  e.  RR )  ->  ( ( S ^ 2 )  <_ 
( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) ^ 2 )  <->  ( 4  x.  ( S ^ 2 ) )  <_  (
4  x.  ( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) ^ 2 ) ) ) )
10225, 69, 101syl2anc 666 . . . . . 6  |-  ( ph  ->  ( ( S ^
2 )  <_  (
( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) ^ 2 )  <-> 
( 4  x.  ( S ^ 2 ) )  <_  ( 4  x.  ( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) ^ 2 ) ) ) )
10397, 102mpbid 214 . . . . 5  |-  ( ph  ->  ( 4  x.  ( S ^ 2 ) )  <_  ( 4  x.  ( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) ^ 2 ) ) )
10427, 71, 43, 103leadd1dd 10224 . . . 4  |-  ( ph  ->  ( ( 4  x.  ( S ^ 2 ) )  +  ( ( K D L ) ^ 2 ) )  <_  ( (
4  x.  ( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) ^ 2 ) )  +  ( ( K D L ) ^ 2 ) ) )
105 metcl 21340 . . . . . . . . . 10  |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  K  e.  X )  ->  ( A D K )  e.  RR )
10631, 9, 38, 105syl3anc 1267 . . . . . . . . 9  |-  ( ph  ->  ( A D K )  e.  RR )
107106resqcld 12439 . . . . . . . 8  |-  ( ph  ->  ( ( A D K ) ^ 2 )  e.  RR )
108 metcl 21340 . . . . . . . . . 10  |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  L  e.  X )  ->  ( A D L )  e.  RR )
10931, 9, 40, 108syl3anc 1267 . . . . . . . . 9  |-  ( ph  ->  ( A D L )  e.  RR )
110109resqcld 12439 . . . . . . . 8  |-  ( ph  ->  ( ( A D L ) ^ 2 )  e.  RR )
111 minvecolem2OLD.5 . . . . . . . 8  |-  ( ph  ->  ( ( A D K ) ^ 2 )  <_  ( ( S ^ 2 )  +  B ) )
112 minvecolem2OLD.6 . . . . . . . 8  |-  ( ph  ->  ( ( A D L ) ^ 2 )  <_  ( ( S ^ 2 )  +  B ) )
113107, 110, 74, 74, 111, 112le2addd 10229 . . . . . . 7  |-  ( ph  ->  ( ( ( A D K ) ^
2 )  +  ( ( A D L ) ^ 2 ) )  <_  ( (
( S ^ 2 )  +  B )  +  ( ( S ^ 2 )  +  B ) ) )
11474recnd 9666 . . . . . . . 8  |-  ( ph  ->  ( ( S ^
2 )  +  B
)  e.  CC )
1151142timesd 10852 . . . . . . 7  |-  ( ph  ->  ( 2  x.  (
( S ^ 2 )  +  B ) )  =  ( ( ( S ^ 2 )  +  B )  +  ( ( S ^ 2 )  +  B ) ) )
116113, 115breqtrrd 4428 . . . . . 6  |-  ( ph  ->  ( ( ( A D K ) ^
2 )  +  ( ( A D L ) ^ 2 ) )  <_  ( 2  x.  ( ( S ^ 2 )  +  B ) ) )
117107, 110readdcld 9667 . . . . . . 7  |-  ( ph  ->  ( ( ( A D K ) ^
2 )  +  ( ( A D L ) ^ 2 ) )  e.  RR )
118 2re 10676 . . . . . . . 8  |-  2  e.  RR
119 remulcl 9621 . . . . . . . 8  |-  ( ( 2  e.  RR  /\  ( ( S ^
2 )  +  B
)  e.  RR )  ->  ( 2  x.  ( ( S ^
2 )  +  B
) )  e.  RR )
120118, 74, 119sylancr 668 . . . . . . 7  |-  ( ph  ->  ( 2  x.  (
( S ^ 2 )  +  B ) )  e.  RR )
121 2pos 10698 . . . . . . . . 9  |-  0  <  2
122118, 121pm3.2i 457 . . . . . . . 8  |-  ( 2  e.  RR  /\  0  <  2 )
123 lemul2 10455 . . . . . . . 8  |-  ( ( ( ( ( A D K ) ^
2 )  +  ( ( A D L ) ^ 2 ) )  e.  RR  /\  ( 2  x.  (
( S ^ 2 )  +  B ) )  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( (
( ( A D K ) ^ 2 )  +  ( ( A D L ) ^ 2 ) )  <_  ( 2  x.  ( ( S ^
2 )  +  B
) )  <->  ( 2  x.  ( ( ( A D K ) ^ 2 )  +  ( ( A D L ) ^ 2 ) ) )  <_ 
( 2  x.  (
2  x.  ( ( S ^ 2 )  +  B ) ) ) ) )
124122, 123mp3an3 1352 . . . . . . 7  |-  ( ( ( ( ( A D K ) ^
2 )  +  ( ( A D L ) ^ 2 ) )  e.  RR  /\  ( 2  x.  (
( S ^ 2 )  +  B ) )  e.  RR )  ->  ( ( ( ( A D K ) ^ 2 )  +  ( ( A D L ) ^
2 ) )  <_ 
( 2  x.  (
( S ^ 2 )  +  B ) )  <->  ( 2  x.  ( ( ( A D K ) ^
2 )  +  ( ( A D L ) ^ 2 ) ) )  <_  (
2  x.  ( 2  x.  ( ( S ^ 2 )  +  B ) ) ) ) )
125117, 120, 124syl2anc 666 . . . . . 6  |-  ( ph  ->  ( ( ( ( A D K ) ^ 2 )  +  ( ( A D L ) ^ 2 ) )  <_  (
2  x.  ( ( S ^ 2 )  +  B ) )  <-> 
( 2  x.  (
( ( A D K ) ^ 2 )  +  ( ( A D L ) ^ 2 ) ) )  <_  ( 2  x.  ( 2  x.  ( ( S ^
2 )  +  B
) ) ) ) )
126116, 125mpbid 214 . . . . 5  |-  ( ph  ->  ( 2  x.  (
( ( A D K ) ^ 2 )  +  ( ( A D L ) ^ 2 ) ) )  <_  ( 2  x.  ( 2  x.  ( ( S ^
2 )  +  B
) ) ) )
1273, 4nvmcl 26261 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  K  e.  X )  ->  ( A M K )  e.  X )
12829, 9, 38, 127syl3anc 1267 . . . . . . 7  |-  ( ph  ->  ( A M K )  e.  X )
1293, 4nvmcl 26261 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  L  e.  X )  ->  ( A M L )  e.  X )
13029, 9, 40, 129syl3anc 1267 . . . . . . 7  |-  ( ph  ->  ( A M L )  e.  X )
1313, 48, 4, 5phpar2 26457 . . . . . . 7  |-  ( ( U  e.  CPreHil OLD  /\  ( A M K )  e.  X  /\  ( A M L )  e.  X )  ->  (
( ( N `  ( ( A M K ) ( +v
`  U ) ( A M L ) ) ) ^ 2 )  +  ( ( N `  ( ( A M K ) M ( A M L ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `
 ( A M K ) ) ^
2 )  +  ( ( N `  ( A M L ) ) ^ 2 ) ) ) )
1327, 128, 130, 131syl3anc 1267 . . . . . 6  |-  ( ph  ->  ( ( ( N `
 ( ( A M K ) ( +v `  U ) ( A M L ) ) ) ^
2 )  +  ( ( N `  (
( A M K ) M ( A M L ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  ( A M K ) ) ^ 2 )  +  ( ( N `  ( A M L ) ) ^ 2 ) ) ) )
133 2cn 10677 . . . . . . . . . 10  |-  2  e.  CC
13468recnd 9666 . . . . . . . . . 10  |-  ( ph  ->  ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) )  e.  CC )
135 sqmul 12335 . . . . . . . . . 10  |-  ( ( 2  e.  CC  /\  ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) )  e.  CC )  ->  ( ( 2  x.  ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) ) ^
2 )  =  ( ( 2 ^ 2 )  x.  ( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) ^ 2 ) ) )
136133, 134, 135sylancr 668 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) ) ^ 2 )  =  ( ( 2 ^ 2 )  x.  ( ( N `
 ( A M ( ( 1  / 
2 ) ( .sOLD `  U ) ( K ( +v
`  U ) L ) ) ) ) ^ 2 ) ) )
137 sq2 12368 . . . . . . . . . 10  |-  ( 2 ^ 2 )  =  4
138137oveq1i 6298 . . . . . . . . 9  |-  ( ( 2 ^ 2 )  x.  ( ( N `
 ( A M ( ( 1  / 
2 ) ( .sOLD `  U ) ( K ( +v
`  U ) L ) ) ) ) ^ 2 ) )  =  ( 4  x.  ( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) ^ 2 ) )
139136, 138syl6eq 2500 . . . . . . . 8  |-  ( ph  ->  ( ( 2  x.  ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) ) ^ 2 )  =  ( 4  x.  ( ( N `
 ( A M ( ( 1  / 
2 ) ( .sOLD `  U ) ( K ( +v
`  U ) L ) ) ) ) ^ 2 ) ) )
140133a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  2  e.  CC )
1413, 57, 5nvs 26284 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  2  e.  CC  /\  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) )  e.  X )  -> 
( N `  (
2 ( .sOLD `  U ) ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) )  =  ( ( abs `  2
)  x.  ( N `
 ( A M ( ( 1  / 
2 ) ( .sOLD `  U ) ( K ( +v
`  U ) L ) ) ) ) ) )
14229, 140, 66, 141syl3anc 1267 . . . . . . . . . . 11  |-  ( ph  ->  ( N `  (
2 ( .sOLD `  U ) ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) )  =  ( ( abs `  2
)  x.  ( N `
 ( A M ( ( 1  / 
2 ) ( .sOLD `  U ) ( K ( +v
`  U ) L ) ) ) ) ) )
143 0le2 10697 . . . . . . . . . . . . 13  |-  0  <_  2
144 absid 13352 . . . . . . . . . . . . 13  |-  ( ( 2  e.  RR  /\  0  <_  2 )  -> 
( abs `  2
)  =  2 )
145118, 143, 144mp2an 677 . . . . . . . . . . . 12  |-  ( abs `  2 )  =  2
146145oveq1i 6298 . . . . . . . . . . 11  |-  ( ( abs `  2 )  x.  ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) )  =  ( 2  x.  ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) )
147142, 146syl6eq 2500 . . . . . . . . . 10  |-  ( ph  ->  ( N `  (
2 ( .sOLD `  U ) ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) )  =  ( 2  x.  ( N `
 ( A M ( ( 1  / 
2 ) ( .sOLD `  U ) ( K ( +v
`  U ) L ) ) ) ) ) )
1483, 4, 57nvmdi 26264 . . . . . . . . . . . . 13  |-  ( ( U  e.  NrmCVec  /\  (
2  e.  CC  /\  A  e.  X  /\  ( ( 1  / 
2 ) ( .sOLD `  U ) ( K ( +v
`  U ) L ) )  e.  X
) )  ->  (
2 ( .sOLD `  U ) ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) )  =  ( ( 2 ( .sOLD `  U ) A ) M ( 2 ( .sOLD `  U
) ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) )
14929, 140, 9, 64, 148syl13anc 1269 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2 ( .sOLD `  U ) ( A M ( ( 1  /  2
) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) )  =  ( ( 2 ( .sOLD `  U ) A ) M ( 2 ( .sOLD `  U ) ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) )
1503, 48, 57nv2 26246 . . . . . . . . . . . . . 14  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( A ( +v `  U ) A )  =  ( 2 ( .sOLD `  U
) A ) )
15129, 9, 150syl2anc 666 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A ( +v
`  U ) A )  =  ( 2 ( .sOLD `  U ) A ) )
152 2ne0 10699 . . . . . . . . . . . . . . . . 17  |-  2  =/=  0
153133, 152recidi 10335 . . . . . . . . . . . . . . . 16  |-  ( 2  x.  ( 1  / 
2 ) )  =  1
154153oveq1i 6298 . . . . . . . . . . . . . . 15  |-  ( ( 2  x.  ( 1  /  2 ) ) ( .sOLD `  U ) ( K ( +v `  U
) L ) )  =  ( 1 ( .sOLD `  U
) ( K ( +v `  U ) L ) )
1553, 48nvgcl 26232 . . . . . . . . . . . . . . . . 17  |-  ( ( U  e.  NrmCVec  /\  K  e.  X  /\  L  e.  X )  ->  ( K ( +v `  U ) L )  e.  X )
15629, 38, 40, 155syl3anc 1267 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( K ( +v
`  U ) L )  e.  X )
1573, 57nvsid 26241 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  NrmCVec  /\  ( K ( +v `  U ) L )  e.  X )  -> 
( 1 ( .sOLD `  U ) ( K ( +v
`  U ) L ) )  =  ( K ( +v `  U ) L ) )
15829, 156, 157syl2anc 666 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 1 ( .sOLD `  U ) ( K ( +v
`  U ) L ) )  =  ( K ( +v `  U ) L ) )
159154, 158syl5eq 2496 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 2  x.  ( 1  /  2
) ) ( .sOLD `  U ) ( K ( +v
`  U ) L ) )  =  ( K ( +v `  U ) L ) )
1603, 57nvsass 26242 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  NrmCVec  /\  (
2  e.  CC  /\  ( 1  /  2
)  e.  CC  /\  ( K ( +v `  U ) L )  e.  X ) )  ->  ( ( 2  x.  ( 1  / 
2 ) ) ( .sOLD `  U
) ( K ( +v `  U ) L ) )  =  ( 2 ( .sOLD `  U ) ( ( 1  / 
2 ) ( .sOLD `  U ) ( K ( +v
`  U ) L ) ) ) )
16129, 140, 47, 156, 160syl13anc 1269 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 2  x.  ( 1  /  2
) ) ( .sOLD `  U ) ( K ( +v
`  U ) L ) )  =  ( 2 ( .sOLD `  U ) ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) )
162159, 161eqtr3d 2486 . . . . . . . . . . . . 13  |-  ( ph  ->  ( K ( +v
`  U ) L )  =  ( 2 ( .sOLD `  U ) ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) )
163151, 162oveq12d 6306 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( A ( +v `  U ) A ) M ( K ( +v `  U ) L ) )  =  ( ( 2 ( .sOLD `  U ) A ) M ( 2 ( .sOLD `  U
) ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) )
1643, 48, 4nvaddsub4 26275 . . . . . . . . . . . . 13  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  A  e.  X )  /\  ( K  e.  X  /\  L  e.  X
) )  ->  (
( A ( +v
`  U ) A ) M ( K ( +v `  U
) L ) )  =  ( ( A M K ) ( +v `  U ) ( A M L ) ) )
16529, 9, 9, 38, 40, 164syl122anc 1276 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( A ( +v `  U ) A ) M ( K ( +v `  U ) L ) )  =  ( ( A M K ) ( +v `  U
) ( A M L ) ) )
166149, 163, 1653eqtr2d 2490 . . . . . . . . . . 11  |-  ( ph  ->  ( 2 ( .sOLD `  U ) ( A M ( ( 1  /  2
) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) )  =  ( ( A M K ) ( +v `  U ) ( A M L ) ) )
167166fveq2d 5867 . . . . . . . . . 10  |-  ( ph  ->  ( N `  (
2 ( .sOLD `  U ) ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) )  =  ( N `  ( ( A M K ) ( +v `  U
) ( A M L ) ) ) )
168147, 167eqtr3d 2486 . . . . . . . . 9  |-  ( ph  ->  ( 2  x.  ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) )  =  ( N `  ( ( A M K ) ( +v `  U
) ( A M L ) ) ) )
169168oveq1d 6303 . . . . . . . 8  |-  ( ph  ->  ( ( 2  x.  ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) ) ^ 2 )  =  ( ( N `  ( ( A M K ) ( +v `  U
) ( A M L ) ) ) ^ 2 ) )
170139, 169eqtr3d 2486 . . . . . . 7  |-  ( ph  ->  ( 4  x.  (
( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) ^ 2 ) )  =  ( ( N `  ( ( A M K ) ( +v `  U
) ( A M L ) ) ) ^ 2 ) )
1713, 4, 5, 10imsdval 26311 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  L  e.  X  /\  K  e.  X )  ->  ( L D K )  =  ( N `  ( L M K ) ) )
17229, 40, 38, 171syl3anc 1267 . . . . . . . . 9  |-  ( ph  ->  ( L D K )  =  ( N `
 ( L M K ) ) )
173 metsym 21358 . . . . . . . . . 10  |-  ( ( D  e.  ( Met `  X )  /\  K  e.  X  /\  L  e.  X )  ->  ( K D L )  =  ( L D K ) )
17431, 38, 40, 173syl3anc 1267 . . . . . . . . 9  |-  ( ph  ->  ( K D L )  =  ( L D K ) )
1753, 4nvnnncan1 26262 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  K  e.  X  /\  L  e.  X )
)  ->  ( ( A M K ) M ( A M L ) )  =  ( L M K ) )
17629, 9, 38, 40, 175syl13anc 1269 . . . . . . . . . 10  |-  ( ph  ->  ( ( A M K ) M ( A M L ) )  =  ( L M K ) )
177176fveq2d 5867 . . . . . . . . 9  |-  ( ph  ->  ( N `  (
( A M K ) M ( A M L ) ) )  =  ( N `
 ( L M K ) ) )
178172, 174, 1773eqtr4d 2494 . . . . . . . 8  |-  ( ph  ->  ( K D L )  =  ( N `
 ( ( A M K ) M ( A M L ) ) ) )
179178oveq1d 6303 . . . . . . 7  |-  ( ph  ->  ( ( K D L ) ^ 2 )  =  ( ( N `  ( ( A M K ) M ( A M L ) ) ) ^ 2 ) )
180170, 179oveq12d 6306 . . . . . 6  |-  ( ph  ->  ( ( 4  x.  ( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) ^ 2 ) )  +  ( ( K D L ) ^ 2 ) )  =  ( ( ( N `  (
( A M K ) ( +v `  U ) ( A M L ) ) ) ^ 2 )  +  ( ( N `
 ( ( A M K ) M ( A M L ) ) ) ^
2 ) ) )
1813, 4, 5, 10imsdval 26311 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  K  e.  X )  ->  ( A D K )  =  ( N `  ( A M K ) ) )
18229, 9, 38, 181syl3anc 1267 . . . . . . . . 9  |-  ( ph  ->  ( A D K )  =  ( N `
 ( A M K ) ) )
183182oveq1d 6303 . . . . . . . 8  |-  ( ph  ->  ( ( A D K ) ^ 2 )  =  ( ( N `  ( A M K ) ) ^ 2 ) )
1843, 4, 5, 10imsdval 26311 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  L  e.  X )  ->  ( A D L )  =  ( N `  ( A M L ) ) )
18529, 9, 40, 184syl3anc 1267 . . . . . . . . 9  |-  ( ph  ->  ( A D L )  =  ( N `
 ( A M L ) ) )
186185oveq1d 6303 . . . . . . . 8  |-  ( ph  ->  ( ( A D L ) ^ 2 )  =  ( ( N `  ( A M L ) ) ^ 2 ) )
187183, 186oveq12d 6306 . . . . . . 7  |-  ( ph  ->  ( ( ( A D K ) ^
2 )  +  ( ( A D L ) ^ 2 ) )  =  ( ( ( N `  ( A M K ) ) ^ 2 )  +  ( ( N `  ( A M L ) ) ^ 2 ) ) )
188187oveq2d 6304 . . . . . 6  |-  ( ph  ->  ( 2  x.  (
( ( A D K ) ^ 2 )  +  ( ( A D L ) ^ 2 ) ) )  =  ( 2  x.  ( ( ( N `  ( A M K ) ) ^ 2 )  +  ( ( N `  ( A M L ) ) ^ 2 ) ) ) )
189132, 180, 1883eqtr4d 2494 . . . . 5  |-  ( ph  ->  ( ( 4  x.  ( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) ^ 2 ) )  +  ( ( K D L ) ^ 2 ) )  =  ( 2  x.  ( ( ( A D K ) ^ 2 )  +  ( ( A D L ) ^ 2 ) ) ) )
190 2t2e4 10756 . . . . . . 7  |-  ( 2  x.  2 )  =  4
191190oveq1i 6298 . . . . . 6  |-  ( ( 2  x.  2 )  x.  ( ( S ^ 2 )  +  B ) )  =  ( 4  x.  (
( S ^ 2 )  +  B ) )
192140, 140, 114mulassd 9663 . . . . . 6  |-  ( ph  ->  ( ( 2  x.  2 )  x.  (
( S ^ 2 )  +  B ) )  =  ( 2  x.  ( 2  x.  ( ( S ^
2 )  +  B
) ) ) )
193191, 192syl5eqr 2498 . . . . 5  |-  ( ph  ->  ( 4  x.  (
( S ^ 2 )  +  B ) )  =  ( 2  x.  ( 2  x.  ( ( S ^
2 )  +  B
) ) ) )
194126, 189, 1933brtr4d 4432 . . . 4  |-  ( ph  ->  ( ( 4  x.  ( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) ^ 2 ) )  +  ( ( K D L ) ^ 2 ) )  <_  ( 4  x.  ( ( S ^ 2 )  +  B ) ) )
19544, 72, 76, 104, 194letrd 9789 . . 3  |-  ( ph  ->  ( ( 4  x.  ( S ^ 2 ) )  +  ( ( K D L ) ^ 2 ) )  <_  ( 4  x.  ( ( S ^ 2 )  +  B ) ) )
196 4cn 10684 . . . . 5  |-  4  e.  CC
197196a1i 11 . . . 4  |-  ( ph  ->  4  e.  CC )
19825recnd 9666 . . . 4  |-  ( ph  ->  ( S ^ 2 )  e.  CC )
19973recnd 9666 . . . 4  |-  ( ph  ->  B  e.  CC )
200197, 198, 199adddid 9664 . . 3  |-  ( ph  ->  ( 4  x.  (
( S ^ 2 )  +  B ) )  =  ( ( 4  x.  ( S ^ 2 ) )  +  ( 4  x.  B ) ) )
201195, 200breqtrd 4426 . 2  |-  ( ph  ->  ( ( 4  x.  ( S ^ 2 ) )  +  ( ( K D L ) ^ 2 ) )  <_  ( (
4  x.  ( S ^ 2 ) )  +  ( 4  x.  B ) ) )
202 remulcl 9621 . . . 4  |-  ( ( 4  e.  RR  /\  B  e.  RR )  ->  ( 4  x.  B
)  e.  RR )
2031, 73, 202sylancr 668 . . 3  |-  ( ph  ->  ( 4  x.  B
)  e.  RR )
20443, 203, 27leadd2d 10205 . 2  |-  ( ph  ->  ( ( ( K D L ) ^
2 )  <_  (
4  x.  B )  <-> 
( ( 4  x.  ( S ^ 2 ) )  +  ( ( K D L ) ^ 2 ) )  <_  ( (
4  x.  ( S ^ 2 ) )  +  ( 4  x.  B ) ) ) )
205201, 204mpbird 236 1  |-  ( ph  ->  ( ( K D L ) ^ 2 )  <_  ( 4  x.  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1443    e. wcel 1886    =/= wne 2621   A.wral 2736   E.wrex 2737    i^i cin 3402    C_ wss 3403   (/)c0 3730   class class class wbr 4401    |-> cmpt 4460   `'ccnv 4832   ran crn 4834   ` cfv 5581  (class class class)co 6288   supcsup 7951   CCcc 9534   RRcr 9535   0cc0 9536   1c1 9537    + caddc 9539    x. cmul 9541    < clt 9672    <_ cle 9673    / cdiv 10266   2c2 10656   4c4 10658   ^cexp 12269   abscabs 13290   Metcme 18949   MetOpencmopn 18953   NrmCVeccnv 26196   +vcpv 26197   BaseSetcba 26198   .sOLDcns 26199   -vcnsb 26201   normCVcnmcv 26202   IndMetcims 26203   SubSpcss 26353   CPreHil OLDccphlo 26446   CBanccbn 26497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-rep 4514  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580  ax-cnex 9592  ax-resscn 9593  ax-1cn 9594  ax-icn 9595  ax-addcl 9596  ax-addrcl 9597  ax-mulcl 9598  ax-mulrcl 9599  ax-mulcom 9600  ax-addass 9601  ax-mulass 9602  ax-distr 9603  ax-i2m1 9604  ax-1ne0 9605  ax-1rid 9606  ax-rnegex 9607  ax-rrecex 9608  ax-cnre 9609  ax-pre-lttri 9610  ax-pre-lttrn 9611  ax-pre-ltadd 9612  ax-pre-mulgt0 9613  ax-pre-sup 9614  ax-addf 9615  ax-mulf 9616
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-nel 2624  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-pss 3419  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-tp 3972  df-op 3974  df-uni 4198  df-iun 4279  df-br 4402  df-opab 4461  df-mpt 4462  df-tr 4497  df-eprel 4744  df-id 4748  df-po 4754  df-so 4755  df-fr 4792  df-we 4794  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-pred 5379  df-ord 5425  df-on 5426  df-lim 5427  df-suc 5428  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-isom 5590  df-riota 6250  df-ov 6291  df-oprab 6292  df-mpt2 6293  df-om 6690  df-1st 6790  df-2nd 6791  df-wrecs 7025  df-recs 7087  df-rdg 7125  df-er 7360  df-map 7471  df-en 7567  df-dom 7568  df-sdom 7569  df-sup 7953  df-pnf 9674  df-mnf 9675  df-xr 9676  df-ltxr 9677  df-le 9678  df-sub 9859  df-neg 9860  df-div 10267  df-nn 10607  df-2 10665  df-3 10666  df-4 10667  df-n0 10867  df-z 10935  df-uz 11157  df-rp 11300  df-xadd 11407  df-seq 12211  df-exp 12270  df-cj 13155  df-re 13156  df-im 13157  df-sqrt 13291  df-abs 13292  df-xmet 18956  df-met 18957  df-grpo 25912  df-gid 25913  df-ginv 25914  df-gdiv 25915  df-ablo 26003  df-vc 26158  df-nv 26204  df-va 26207  df-ba 26208  df-sm 26209  df-0v 26210  df-vs 26211  df-nmcv 26212  df-ims 26213  df-ssp 26354  df-ph 26447  df-cbn 26498
This theorem is referenced by:  minvecolem3OLD  26521  minvecolem7OLD  26528
  Copyright terms: Public domain W3C validator