MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem2 Structured version   Unicode version

Theorem minvecolem2 24211
Description: Lemma for minveco 24220. Any two points  K and 
L in  Y are close to each other if they are close to the infimum of distance to  A. (Contributed by Mario Carneiro, 9-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x  |-  X  =  ( BaseSet `  U )
minveco.m  |-  M  =  ( -v `  U
)
minveco.n  |-  N  =  ( normCV `  U )
minveco.y  |-  Y  =  ( BaseSet `  W )
minveco.u  |-  ( ph  ->  U  e.  CPreHil OLD )
minveco.w  |-  ( ph  ->  W  e.  ( (
SubSp `  U )  i^i 
CBan ) )
minveco.a  |-  ( ph  ->  A  e.  X )
minveco.d  |-  D  =  ( IndMet `  U )
minveco.j  |-  J  =  ( MetOpen `  D )
minveco.r  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
minveco.s  |-  S  =  sup ( R ,  RR ,  `'  <  )
minvecolem2.1  |-  ( ph  ->  B  e.  RR )
minvecolem2.2  |-  ( ph  ->  0  <_  B )
minvecolem2.3  |-  ( ph  ->  K  e.  Y )
minvecolem2.4  |-  ( ph  ->  L  e.  Y )
minvecolem2.5  |-  ( ph  ->  ( ( A D K ) ^ 2 )  <_  ( ( S ^ 2 )  +  B ) )
minvecolem2.6  |-  ( ph  ->  ( ( A D L ) ^ 2 )  <_  ( ( S ^ 2 )  +  B ) )
Assertion
Ref Expression
minvecolem2  |-  ( ph  ->  ( ( K D L ) ^ 2 )  <_  ( 4  x.  B ) )
Distinct variable groups:    y, J    y, K    y, L    y, M    y, N    ph, y    y, S    y, A    y, D    y, U    y, W    y, Y
Allowed substitution hints:    B( y)    R( y)    X( y)

Proof of Theorem minvecolem2
Dummy variables  x  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4re 10394 . . . . . 6  |-  4  e.  RR
2 minveco.s . . . . . . . 8  |-  S  =  sup ( R ,  RR ,  `'  <  )
3 minveco.x . . . . . . . . . . 11  |-  X  =  ( BaseSet `  U )
4 minveco.m . . . . . . . . . . 11  |-  M  =  ( -v `  U
)
5 minveco.n . . . . . . . . . . 11  |-  N  =  ( normCV `  U )
6 minveco.y . . . . . . . . . . 11  |-  Y  =  ( BaseSet `  W )
7 minveco.u . . . . . . . . . . 11  |-  ( ph  ->  U  e.  CPreHil OLD )
8 minveco.w . . . . . . . . . . 11  |-  ( ph  ->  W  e.  ( (
SubSp `  U )  i^i 
CBan ) )
9 minveco.a . . . . . . . . . . 11  |-  ( ph  ->  A  e.  X )
10 minveco.d . . . . . . . . . . 11  |-  D  =  ( IndMet `  U )
11 minveco.j . . . . . . . . . . 11  |-  J  =  ( MetOpen `  D )
12 minveco.r . . . . . . . . . . 11  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
133, 4, 5, 6, 7, 8, 9, 10, 11, 12minvecolem1 24210 . . . . . . . . . 10  |-  ( ph  ->  ( R  C_  RR  /\  R  =/=  (/)  /\  A. w  e.  R  0  <_  w ) )
1413simp1d 995 . . . . . . . . 9  |-  ( ph  ->  R  C_  RR )
1513simp2d 996 . . . . . . . . 9  |-  ( ph  ->  R  =/=  (/) )
16 0re 9382 . . . . . . . . . 10  |-  0  e.  RR
1713simp3d 997 . . . . . . . . . 10  |-  ( ph  ->  A. w  e.  R 
0  <_  w )
18 breq1 4292 . . . . . . . . . . . 12  |-  ( x  =  0  ->  (
x  <_  w  <->  0  <_  w ) )
1918ralbidv 2733 . . . . . . . . . . 11  |-  ( x  =  0  ->  ( A. w  e.  R  x  <_  w  <->  A. w  e.  R  0  <_  w ) )
2019rspcev 3070 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  A. w  e.  R  0  <_  w )  ->  E. x  e.  RR  A. w  e.  R  x  <_  w )
2116, 17, 20sylancr 658 . . . . . . . . 9  |-  ( ph  ->  E. x  e.  RR  A. w  e.  R  x  <_  w )
22 infmrcl 10305 . . . . . . . . 9  |-  ( ( R  C_  RR  /\  R  =/=  (/)  /\  E. x  e.  RR  A. w  e.  R  x  <_  w
)  ->  sup ( R ,  RR ,  `'  <  )  e.  RR )
2314, 15, 21, 22syl3anc 1213 . . . . . . . 8  |-  ( ph  ->  sup ( R ,  RR ,  `'  <  )  e.  RR )
242, 23syl5eqel 2525 . . . . . . 7  |-  ( ph  ->  S  e.  RR )
2524resqcld 12030 . . . . . 6  |-  ( ph  ->  ( S ^ 2 )  e.  RR )
26 remulcl 9363 . . . . . 6  |-  ( ( 4  e.  RR  /\  ( S ^ 2 )  e.  RR )  -> 
( 4  x.  ( S ^ 2 ) )  e.  RR )
271, 25, 26sylancr 658 . . . . 5  |-  ( ph  ->  ( 4  x.  ( S ^ 2 ) )  e.  RR )
28 phnv 24149 . . . . . . . . 9  |-  ( U  e.  CPreHil OLD  ->  U  e.  NrmCVec )
297, 28syl 16 . . . . . . . 8  |-  ( ph  ->  U  e.  NrmCVec )
303, 10imsmet 24017 . . . . . . . 8  |-  ( U  e.  NrmCVec  ->  D  e.  ( Met `  X ) )
3129, 30syl 16 . . . . . . 7  |-  ( ph  ->  D  e.  ( Met `  X ) )
32 inss1 3567 . . . . . . . . . 10  |-  ( (
SubSp `  U )  i^i 
CBan )  C_  ( SubSp `  U )
3332, 8sseldi 3351 . . . . . . . . 9  |-  ( ph  ->  W  e.  ( SubSp `  U ) )
34 eqid 2441 . . . . . . . . . 10  |-  ( SubSp `  U )  =  (
SubSp `  U )
353, 6, 34sspba 24060 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  W  e.  ( SubSp `  U )
)  ->  Y  C_  X
)
3629, 33, 35syl2anc 656 . . . . . . . 8  |-  ( ph  ->  Y  C_  X )
37 minvecolem2.3 . . . . . . . 8  |-  ( ph  ->  K  e.  Y )
3836, 37sseldd 3354 . . . . . . 7  |-  ( ph  ->  K  e.  X )
39 minvecolem2.4 . . . . . . . 8  |-  ( ph  ->  L  e.  Y )
4036, 39sseldd 3354 . . . . . . 7  |-  ( ph  ->  L  e.  X )
41 metcl 19866 . . . . . . 7  |-  ( ( D  e.  ( Met `  X )  /\  K  e.  X  /\  L  e.  X )  ->  ( K D L )  e.  RR )
4231, 38, 40, 41syl3anc 1213 . . . . . 6  |-  ( ph  ->  ( K D L )  e.  RR )
4342resqcld 12030 . . . . 5  |-  ( ph  ->  ( ( K D L ) ^ 2 )  e.  RR )
4427, 43readdcld 9409 . . . 4  |-  ( ph  ->  ( ( 4  x.  ( S ^ 2 ) )  +  ( ( K D L ) ^ 2 ) )  e.  RR )
45 ax-1cn 9336 . . . . . . . . . . . . 13  |-  1  e.  CC
46 halfcl 10546 . . . . . . . . . . . . 13  |-  ( 1  e.  CC  ->  (
1  /  2 )  e.  CC )
4745, 46mp1i 12 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1  /  2
)  e.  CC )
48 eqid 2441 . . . . . . . . . . . . . . 15  |-  ( +v
`  U )  =  ( +v `  U
)
49 eqid 2441 . . . . . . . . . . . . . . 15  |-  ( +v
`  W )  =  ( +v `  W
)
506, 48, 49, 34sspgval 24062 . . . . . . . . . . . . . 14  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  ( SubSp `  U ) )  /\  ( K  e.  Y  /\  L  e.  Y
) )  ->  ( K ( +v `  W ) L )  =  ( K ( +v `  U ) L ) )
5129, 33, 37, 39, 50syl22anc 1214 . . . . . . . . . . . . 13  |-  ( ph  ->  ( K ( +v
`  W ) L )  =  ( K ( +v `  U
) L ) )
5234sspnv 24059 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  NrmCVec  /\  W  e.  ( SubSp `  U )
)  ->  W  e.  NrmCVec )
5329, 33, 52syl2anc 656 . . . . . . . . . . . . . 14  |-  ( ph  ->  W  e.  NrmCVec )
546, 49nvgcl 23933 . . . . . . . . . . . . . 14  |-  ( ( W  e.  NrmCVec  /\  K  e.  Y  /\  L  e.  Y )  ->  ( K ( +v `  W ) L )  e.  Y )
5553, 37, 39, 54syl3anc 1213 . . . . . . . . . . . . 13  |-  ( ph  ->  ( K ( +v
`  W ) L )  e.  Y )
5651, 55eqeltrrd 2516 . . . . . . . . . . . 12  |-  ( ph  ->  ( K ( +v
`  U ) L )  e.  Y )
57 eqid 2441 . . . . . . . . . . . . 13  |-  ( .sOLD `  U )  =  ( .sOLD `  U )
58 eqid 2441 . . . . . . . . . . . . 13  |-  ( .sOLD `  W )  =  ( .sOLD `  W )
596, 57, 58, 34sspsval 24064 . . . . . . . . . . . 12  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  ( SubSp `  U ) )  /\  ( ( 1  / 
2 )  e.  CC  /\  ( K ( +v
`  U ) L )  e.  Y ) )  ->  ( (
1  /  2 ) ( .sOLD `  W ) ( K ( +v `  U
) L ) )  =  ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) )
6029, 33, 47, 56, 59syl22anc 1214 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 1  / 
2 ) ( .sOLD `  W ) ( K ( +v
`  U ) L ) )  =  ( ( 1  /  2
) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) )
616, 58nvscl 23941 . . . . . . . . . . . 12  |-  ( ( W  e.  NrmCVec  /\  (
1  /  2 )  e.  CC  /\  ( K ( +v `  U ) L )  e.  Y )  -> 
( ( 1  / 
2 ) ( .sOLD `  W ) ( K ( +v
`  U ) L ) )  e.  Y
)
6253, 47, 56, 61syl3anc 1213 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 1  / 
2 ) ( .sOLD `  W ) ( K ( +v
`  U ) L ) )  e.  Y
)
6360, 62eqeltrrd 2516 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1  / 
2 ) ( .sOLD `  U ) ( K ( +v
`  U ) L ) )  e.  Y
)
6436, 63sseldd 3354 . . . . . . . . 9  |-  ( ph  ->  ( ( 1  / 
2 ) ( .sOLD `  U ) ( K ( +v
`  U ) L ) )  e.  X
)
653, 4nvmcl 23962 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  (
( 1  /  2
) ( .sOLD `  U ) ( K ( +v `  U
) L ) )  e.  X )  -> 
( A M ( ( 1  /  2
) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) )  e.  X )
6629, 9, 64, 65syl3anc 1213 . . . . . . . 8  |-  ( ph  ->  ( A M ( ( 1  /  2
) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) )  e.  X )
673, 5nvcl 23982 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) )  e.  X )  -> 
( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) )  e.  RR )
6829, 66, 67syl2anc 656 . . . . . . 7  |-  ( ph  ->  ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) )  e.  RR )
6968resqcld 12030 . . . . . 6  |-  ( ph  ->  ( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) ^ 2 )  e.  RR )
70 remulcl 9363 . . . . . 6  |-  ( ( 4  e.  RR  /\  ( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) ^ 2 )  e.  RR )  ->  ( 4  x.  ( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) ^ 2 ) )  e.  RR )
711, 69, 70sylancr 658 . . . . 5  |-  ( ph  ->  ( 4  x.  (
( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) ^ 2 ) )  e.  RR )
7271, 43readdcld 9409 . . . 4  |-  ( ph  ->  ( ( 4  x.  ( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) ^ 2 ) )  +  ( ( K D L ) ^ 2 ) )  e.  RR )
73 minvecolem2.1 . . . . . 6  |-  ( ph  ->  B  e.  RR )
7425, 73readdcld 9409 . . . . 5  |-  ( ph  ->  ( ( S ^
2 )  +  B
)  e.  RR )
75 remulcl 9363 . . . . 5  |-  ( ( 4  e.  RR  /\  ( ( S ^
2 )  +  B
)  e.  RR )  ->  ( 4  x.  ( ( S ^
2 )  +  B
) )  e.  RR )
761, 74, 75sylancr 658 . . . 4  |-  ( ph  ->  ( 4  x.  (
( S ^ 2 )  +  B ) )  e.  RR )
7716a1i 11 . . . . . . . . . 10  |-  ( ph  ->  0  e.  RR )
78 infmrgelb 10306 . . . . . . . . . 10  |-  ( ( ( R  C_  RR  /\  R  =/=  (/)  /\  E. x  e.  RR  A. w  e.  R  x  <_  w )  /\  0  e.  RR )  ->  (
0  <_  sup ( R ,  RR ,  `'  <  )  <->  A. w  e.  R  0  <_  w ) )
7914, 15, 21, 77, 78syl31anc 1216 . . . . . . . . 9  |-  ( ph  ->  ( 0  <_  sup ( R ,  RR ,  `'  <  )  <->  A. w  e.  R  0  <_  w ) )
8017, 79mpbird 232 . . . . . . . 8  |-  ( ph  ->  0  <_  sup ( R ,  RR ,  `'  <  ) )
8180, 2syl6breqr 4329 . . . . . . 7  |-  ( ph  ->  0  <_  S )
82 eqid 2441 . . . . . . . . . . . 12  |-  ( N `
 ( A M ( ( 1  / 
2 ) ( .sOLD `  U ) ( K ( +v
`  U ) L ) ) ) )  =  ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) )
83 oveq2 6098 . . . . . . . . . . . . . . 15  |-  ( y  =  ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) )  -> 
( A M y )  =  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) )
8483fveq2d 5692 . . . . . . . . . . . . . 14  |-  ( y  =  ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) )  -> 
( N `  ( A M y ) )  =  ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) )
8584eqeq2d 2452 . . . . . . . . . . . . 13  |-  ( y  =  ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) )  -> 
( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) )  =  ( N `  ( A M y ) )  <-> 
( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) )  =  ( N `
 ( A M ( ( 1  / 
2 ) ( .sOLD `  U ) ( K ( +v
`  U ) L ) ) ) ) ) )
8685rspcev 3070 . . . . . . . . . . . 12  |-  ( ( ( ( 1  / 
2 ) ( .sOLD `  U ) ( K ( +v
`  U ) L ) )  e.  Y  /\  ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) )  =  ( N `
 ( A M ( ( 1  / 
2 ) ( .sOLD `  U ) ( K ( +v
`  U ) L ) ) ) ) )  ->  E. y  e.  Y  ( N `  ( A M ( ( 1  /  2
) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) )  =  ( N `  ( A M y ) ) )
8763, 82, 86sylancl 657 . . . . . . . . . . 11  |-  ( ph  ->  E. y  e.  Y  ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) )  =  ( N `
 ( A M y ) ) )
88 eqid 2441 . . . . . . . . . . . 12  |-  ( y  e.  Y  |->  ( N `
 ( A M y ) ) )  =  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
89 fvex 5698 . . . . . . . . . . . 12  |-  ( N `
 ( A M y ) )  e. 
_V
9088, 89elrnmpti 5086 . . . . . . . . . . 11  |-  ( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) )  e.  ran  (
y  e.  Y  |->  ( N `  ( A M y ) ) )  <->  E. y  e.  Y  ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) )  =  ( N `
 ( A M y ) ) )
9187, 90sylibr 212 . . . . . . . . . 10  |-  ( ph  ->  ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) )  e.  ran  (
y  e.  Y  |->  ( N `  ( A M y ) ) ) )
9291, 12syl6eleqr 2532 . . . . . . . . 9  |-  ( ph  ->  ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) )  e.  R )
93 infmrlb 10307 . . . . . . . . 9  |-  ( ( R  C_  RR  /\  E. x  e.  RR  A. w  e.  R  x  <_  w  /\  ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) )  e.  R
)  ->  sup ( R ,  RR ,  `'  <  )  <_  ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) )
9414, 21, 92, 93syl3anc 1213 . . . . . . . 8  |-  ( ph  ->  sup ( R ,  RR ,  `'  <  )  <_  ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) )
952, 94syl5eqbr 4322 . . . . . . 7  |-  ( ph  ->  S  <_  ( N `  ( A M ( ( 1  /  2
) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) )
96 le2sq2 11937 . . . . . . 7  |-  ( ( ( S  e.  RR  /\  0  <_  S )  /\  ( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) )  e.  RR  /\  S  <_  ( N `  ( A M ( ( 1  /  2
) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) ) )  ->  ( S ^
2 )  <_  (
( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) ^ 2 ) )
9724, 81, 68, 95, 96syl22anc 1214 . . . . . 6  |-  ( ph  ->  ( S ^ 2 )  <_  ( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) ^ 2 ) )
98 4pos 10413 . . . . . . . . 9  |-  0  <  4
991, 98pm3.2i 452 . . . . . . . 8  |-  ( 4  e.  RR  /\  0  <  4 )
100 lemul2 10178 . . . . . . . 8  |-  ( ( ( S ^ 2 )  e.  RR  /\  ( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) ^ 2 )  e.  RR  /\  ( 4  e.  RR  /\  0  <  4 ) )  ->  ( ( S ^ 2 )  <_ 
( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) ^ 2 )  <->  ( 4  x.  ( S ^ 2 ) )  <_  (
4  x.  ( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) ^ 2 ) ) ) )
10199, 100mp3an3 1298 . . . . . . 7  |-  ( ( ( S ^ 2 )  e.  RR  /\  ( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) ^ 2 )  e.  RR )  ->  ( ( S ^ 2 )  <_ 
( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) ^ 2 )  <->  ( 4  x.  ( S ^ 2 ) )  <_  (
4  x.  ( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) ^ 2 ) ) ) )
10225, 69, 101syl2anc 656 . . . . . 6  |-  ( ph  ->  ( ( S ^
2 )  <_  (
( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) ^ 2 )  <-> 
( 4  x.  ( S ^ 2 ) )  <_  ( 4  x.  ( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) ^ 2 ) ) ) )
10397, 102mpbid 210 . . . . 5  |-  ( ph  ->  ( 4  x.  ( S ^ 2 ) )  <_  ( 4  x.  ( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) ^ 2 ) ) )
10427, 71, 43, 103leadd1dd 9949 . . . 4  |-  ( ph  ->  ( ( 4  x.  ( S ^ 2 ) )  +  ( ( K D L ) ^ 2 ) )  <_  ( (
4  x.  ( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) ^ 2 ) )  +  ( ( K D L ) ^ 2 ) ) )
105 metcl 19866 . . . . . . . . . 10  |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  K  e.  X )  ->  ( A D K )  e.  RR )
10631, 9, 38, 105syl3anc 1213 . . . . . . . . 9  |-  ( ph  ->  ( A D K )  e.  RR )
107106resqcld 12030 . . . . . . . 8  |-  ( ph  ->  ( ( A D K ) ^ 2 )  e.  RR )
108 metcl 19866 . . . . . . . . . 10  |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  L  e.  X )  ->  ( A D L )  e.  RR )
10931, 9, 40, 108syl3anc 1213 . . . . . . . . 9  |-  ( ph  ->  ( A D L )  e.  RR )
110109resqcld 12030 . . . . . . . 8  |-  ( ph  ->  ( ( A D L ) ^ 2 )  e.  RR )
111 minvecolem2.5 . . . . . . . 8  |-  ( ph  ->  ( ( A D K ) ^ 2 )  <_  ( ( S ^ 2 )  +  B ) )
112 minvecolem2.6 . . . . . . . 8  |-  ( ph  ->  ( ( A D L ) ^ 2 )  <_  ( ( S ^ 2 )  +  B ) )
113107, 110, 74, 74, 111, 112le2addd 9953 . . . . . . 7  |-  ( ph  ->  ( ( ( A D K ) ^
2 )  +  ( ( A D L ) ^ 2 ) )  <_  ( (
( S ^ 2 )  +  B )  +  ( ( S ^ 2 )  +  B ) ) )
11474recnd 9408 . . . . . . . 8  |-  ( ph  ->  ( ( S ^
2 )  +  B
)  e.  CC )
1151142timesd 10563 . . . . . . 7  |-  ( ph  ->  ( 2  x.  (
( S ^ 2 )  +  B ) )  =  ( ( ( S ^ 2 )  +  B )  +  ( ( S ^ 2 )  +  B ) ) )
116113, 115breqtrrd 4315 . . . . . 6  |-  ( ph  ->  ( ( ( A D K ) ^
2 )  +  ( ( A D L ) ^ 2 ) )  <_  ( 2  x.  ( ( S ^ 2 )  +  B ) ) )
117107, 110readdcld 9409 . . . . . . 7  |-  ( ph  ->  ( ( ( A D K ) ^
2 )  +  ( ( A D L ) ^ 2 ) )  e.  RR )
118 2re 10387 . . . . . . . 8  |-  2  e.  RR
119 remulcl 9363 . . . . . . . 8  |-  ( ( 2  e.  RR  /\  ( ( S ^
2 )  +  B
)  e.  RR )  ->  ( 2  x.  ( ( S ^
2 )  +  B
) )  e.  RR )
120118, 74, 119sylancr 658 . . . . . . 7  |-  ( ph  ->  ( 2  x.  (
( S ^ 2 )  +  B ) )  e.  RR )
121 2pos 10409 . . . . . . . . 9  |-  0  <  2
122118, 121pm3.2i 452 . . . . . . . 8  |-  ( 2  e.  RR  /\  0  <  2 )
123 lemul2 10178 . . . . . . . 8  |-  ( ( ( ( ( A D K ) ^
2 )  +  ( ( A D L ) ^ 2 ) )  e.  RR  /\  ( 2  x.  (
( S ^ 2 )  +  B ) )  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( (
( ( A D K ) ^ 2 )  +  ( ( A D L ) ^ 2 ) )  <_  ( 2  x.  ( ( S ^
2 )  +  B
) )  <->  ( 2  x.  ( ( ( A D K ) ^ 2 )  +  ( ( A D L ) ^ 2 ) ) )  <_ 
( 2  x.  (
2  x.  ( ( S ^ 2 )  +  B ) ) ) ) )
124122, 123mp3an3 1298 . . . . . . 7  |-  ( ( ( ( ( A D K ) ^
2 )  +  ( ( A D L ) ^ 2 ) )  e.  RR  /\  ( 2  x.  (
( S ^ 2 )  +  B ) )  e.  RR )  ->  ( ( ( ( A D K ) ^ 2 )  +  ( ( A D L ) ^
2 ) )  <_ 
( 2  x.  (
( S ^ 2 )  +  B ) )  <->  ( 2  x.  ( ( ( A D K ) ^
2 )  +  ( ( A D L ) ^ 2 ) ) )  <_  (
2  x.  ( 2  x.  ( ( S ^ 2 )  +  B ) ) ) ) )
125117, 120, 124syl2anc 656 . . . . . 6  |-  ( ph  ->  ( ( ( ( A D K ) ^ 2 )  +  ( ( A D L ) ^ 2 ) )  <_  (
2  x.  ( ( S ^ 2 )  +  B ) )  <-> 
( 2  x.  (
( ( A D K ) ^ 2 )  +  ( ( A D L ) ^ 2 ) ) )  <_  ( 2  x.  ( 2  x.  ( ( S ^
2 )  +  B
) ) ) ) )
126116, 125mpbid 210 . . . . 5  |-  ( ph  ->  ( 2  x.  (
( ( A D K ) ^ 2 )  +  ( ( A D L ) ^ 2 ) ) )  <_  ( 2  x.  ( 2  x.  ( ( S ^
2 )  +  B
) ) ) )
1273, 4nvmcl 23962 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  K  e.  X )  ->  ( A M K )  e.  X )
12829, 9, 38, 127syl3anc 1213 . . . . . . 7  |-  ( ph  ->  ( A M K )  e.  X )
1293, 4nvmcl 23962 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  L  e.  X )  ->  ( A M L )  e.  X )
13029, 9, 40, 129syl3anc 1213 . . . . . . 7  |-  ( ph  ->  ( A M L )  e.  X )
1313, 48, 4, 5phpar2 24158 . . . . . . 7  |-  ( ( U  e.  CPreHil OLD  /\  ( A M K )  e.  X  /\  ( A M L )  e.  X )  ->  (
( ( N `  ( ( A M K ) ( +v
`  U ) ( A M L ) ) ) ^ 2 )  +  ( ( N `  ( ( A M K ) M ( A M L ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `
 ( A M K ) ) ^
2 )  +  ( ( N `  ( A M L ) ) ^ 2 ) ) ) )
1327, 128, 130, 131syl3anc 1213 . . . . . 6  |-  ( ph  ->  ( ( ( N `
 ( ( A M K ) ( +v `  U ) ( A M L ) ) ) ^
2 )  +  ( ( N `  (
( A M K ) M ( A M L ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  ( A M K ) ) ^ 2 )  +  ( ( N `  ( A M L ) ) ^ 2 ) ) ) )
133 2cn 10388 . . . . . . . . . 10  |-  2  e.  CC
13468recnd 9408 . . . . . . . . . 10  |-  ( ph  ->  ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) )  e.  CC )
135 sqmul 11925 . . . . . . . . . 10  |-  ( ( 2  e.  CC  /\  ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) )  e.  CC )  ->  ( ( 2  x.  ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) ) ^
2 )  =  ( ( 2 ^ 2 )  x.  ( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) ^ 2 ) ) )
136133, 134, 135sylancr 658 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) ) ^ 2 )  =  ( ( 2 ^ 2 )  x.  ( ( N `
 ( A M ( ( 1  / 
2 ) ( .sOLD `  U ) ( K ( +v
`  U ) L ) ) ) ) ^ 2 ) ) )
137 sq2 11958 . . . . . . . . . 10  |-  ( 2 ^ 2 )  =  4
138137oveq1i 6100 . . . . . . . . 9  |-  ( ( 2 ^ 2 )  x.  ( ( N `
 ( A M ( ( 1  / 
2 ) ( .sOLD `  U ) ( K ( +v
`  U ) L ) ) ) ) ^ 2 ) )  =  ( 4  x.  ( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) ^ 2 ) )
139136, 138syl6eq 2489 . . . . . . . 8  |-  ( ph  ->  ( ( 2  x.  ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) ) ^ 2 )  =  ( 4  x.  ( ( N `
 ( A M ( ( 1  / 
2 ) ( .sOLD `  U ) ( K ( +v
`  U ) L ) ) ) ) ^ 2 ) ) )
140133a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  2  e.  CC )
1413, 57, 5nvs 23985 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  2  e.  CC  /\  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) )  e.  X )  -> 
( N `  (
2 ( .sOLD `  U ) ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) )  =  ( ( abs `  2
)  x.  ( N `
 ( A M ( ( 1  / 
2 ) ( .sOLD `  U ) ( K ( +v
`  U ) L ) ) ) ) ) )
14229, 140, 66, 141syl3anc 1213 . . . . . . . . . . 11  |-  ( ph  ->  ( N `  (
2 ( .sOLD `  U ) ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) )  =  ( ( abs `  2
)  x.  ( N `
 ( A M ( ( 1  / 
2 ) ( .sOLD `  U ) ( K ( +v
`  U ) L ) ) ) ) ) )
143 0le2 10408 . . . . . . . . . . . . 13  |-  0  <_  2
144 absid 12781 . . . . . . . . . . . . 13  |-  ( ( 2  e.  RR  /\  0  <_  2 )  -> 
( abs `  2
)  =  2 )
145118, 143, 144mp2an 667 . . . . . . . . . . . 12  |-  ( abs `  2 )  =  2
146145oveq1i 6100 . . . . . . . . . . 11  |-  ( ( abs `  2 )  x.  ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) )  =  ( 2  x.  ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) )
147142, 146syl6eq 2489 . . . . . . . . . 10  |-  ( ph  ->  ( N `  (
2 ( .sOLD `  U ) ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) )  =  ( 2  x.  ( N `
 ( A M ( ( 1  / 
2 ) ( .sOLD `  U ) ( K ( +v
`  U ) L ) ) ) ) ) )
1483, 4, 57nvmdi 23965 . . . . . . . . . . . . 13  |-  ( ( U  e.  NrmCVec  /\  (
2  e.  CC  /\  A  e.  X  /\  ( ( 1  / 
2 ) ( .sOLD `  U ) ( K ( +v
`  U ) L ) )  e.  X
) )  ->  (
2 ( .sOLD `  U ) ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) )  =  ( ( 2 ( .sOLD `  U ) A ) M ( 2 ( .sOLD `  U
) ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) )
14929, 140, 9, 64, 148syl13anc 1215 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2 ( .sOLD `  U ) ( A M ( ( 1  /  2
) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) )  =  ( ( 2 ( .sOLD `  U ) A ) M ( 2 ( .sOLD `  U ) ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) )
1503, 48, 57nv2 23947 . . . . . . . . . . . . . 14  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( A ( +v `  U ) A )  =  ( 2 ( .sOLD `  U
) A ) )
15129, 9, 150syl2anc 656 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A ( +v
`  U ) A )  =  ( 2 ( .sOLD `  U ) A ) )
152 2ne0 10410 . . . . . . . . . . . . . . . . 17  |-  2  =/=  0
153133, 152recidi 10058 . . . . . . . . . . . . . . . 16  |-  ( 2  x.  ( 1  / 
2 ) )  =  1
154153oveq1i 6100 . . . . . . . . . . . . . . 15  |-  ( ( 2  x.  ( 1  /  2 ) ) ( .sOLD `  U ) ( K ( +v `  U
) L ) )  =  ( 1 ( .sOLD `  U
) ( K ( +v `  U ) L ) )
1553, 48nvgcl 23933 . . . . . . . . . . . . . . . . 17  |-  ( ( U  e.  NrmCVec  /\  K  e.  X  /\  L  e.  X )  ->  ( K ( +v `  U ) L )  e.  X )
15629, 38, 40, 155syl3anc 1213 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( K ( +v
`  U ) L )  e.  X )
1573, 57nvsid 23942 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  NrmCVec  /\  ( K ( +v `  U ) L )  e.  X )  -> 
( 1 ( .sOLD `  U ) ( K ( +v
`  U ) L ) )  =  ( K ( +v `  U ) L ) )
15829, 156, 157syl2anc 656 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 1 ( .sOLD `  U ) ( K ( +v
`  U ) L ) )  =  ( K ( +v `  U ) L ) )
159154, 158syl5eq 2485 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 2  x.  ( 1  /  2
) ) ( .sOLD `  U ) ( K ( +v
`  U ) L ) )  =  ( K ( +v `  U ) L ) )
1603, 57nvsass 23943 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  NrmCVec  /\  (
2  e.  CC  /\  ( 1  /  2
)  e.  CC  /\  ( K ( +v `  U ) L )  e.  X ) )  ->  ( ( 2  x.  ( 1  / 
2 ) ) ( .sOLD `  U
) ( K ( +v `  U ) L ) )  =  ( 2 ( .sOLD `  U ) ( ( 1  / 
2 ) ( .sOLD `  U ) ( K ( +v
`  U ) L ) ) ) )
16129, 140, 47, 156, 160syl13anc 1215 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 2  x.  ( 1  /  2
) ) ( .sOLD `  U ) ( K ( +v
`  U ) L ) )  =  ( 2 ( .sOLD `  U ) ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) )
162159, 161eqtr3d 2475 . . . . . . . . . . . . 13  |-  ( ph  ->  ( K ( +v
`  U ) L )  =  ( 2 ( .sOLD `  U ) ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) )
163151, 162oveq12d 6108 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( A ( +v `  U ) A ) M ( K ( +v `  U ) L ) )  =  ( ( 2 ( .sOLD `  U ) A ) M ( 2 ( .sOLD `  U
) ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) )
1643, 48, 4nvaddsub4 23976 . . . . . . . . . . . . 13  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  A  e.  X )  /\  ( K  e.  X  /\  L  e.  X
) )  ->  (
( A ( +v
`  U ) A ) M ( K ( +v `  U
) L ) )  =  ( ( A M K ) ( +v `  U ) ( A M L ) ) )
16529, 9, 9, 38, 40, 164syl122anc 1222 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( A ( +v `  U ) A ) M ( K ( +v `  U ) L ) )  =  ( ( A M K ) ( +v `  U
) ( A M L ) ) )
166149, 163, 1653eqtr2d 2479 . . . . . . . . . . 11  |-  ( ph  ->  ( 2 ( .sOLD `  U ) ( A M ( ( 1  /  2
) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) )  =  ( ( A M K ) ( +v `  U ) ( A M L ) ) )
167166fveq2d 5692 . . . . . . . . . 10  |-  ( ph  ->  ( N `  (
2 ( .sOLD `  U ) ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) )  =  ( N `  ( ( A M K ) ( +v `  U
) ( A M L ) ) ) )
168147, 167eqtr3d 2475 . . . . . . . . 9  |-  ( ph  ->  ( 2  x.  ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) )  =  ( N `  ( ( A M K ) ( +v `  U
) ( A M L ) ) ) )
169168oveq1d 6105 . . . . . . . 8  |-  ( ph  ->  ( ( 2  x.  ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) ) ^ 2 )  =  ( ( N `  ( ( A M K ) ( +v `  U
) ( A M L ) ) ) ^ 2 ) )
170139, 169eqtr3d 2475 . . . . . . 7  |-  ( ph  ->  ( 4  x.  (
( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U
) ( K ( +v `  U ) L ) ) ) ) ^ 2 ) )  =  ( ( N `  ( ( A M K ) ( +v `  U
) ( A M L ) ) ) ^ 2 ) )
1713, 4, 5, 10imsdval 24012 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  L  e.  X  /\  K  e.  X )  ->  ( L D K )  =  ( N `  ( L M K ) ) )
17229, 40, 38, 171syl3anc 1213 . . . . . . . . 9  |-  ( ph  ->  ( L D K )  =  ( N `
 ( L M K ) ) )
173 metsym 19884 . . . . . . . . . 10  |-  ( ( D  e.  ( Met `  X )  /\  K  e.  X  /\  L  e.  X )  ->  ( K D L )  =  ( L D K ) )
17431, 38, 40, 173syl3anc 1213 . . . . . . . . 9  |-  ( ph  ->  ( K D L )  =  ( L D K ) )
1753, 4nvnnncan1 23963 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  K  e.  X  /\  L  e.  X )
)  ->  ( ( A M K ) M ( A M L ) )  =  ( L M K ) )
17629, 9, 38, 40, 175syl13anc 1215 . . . . . . . . . 10  |-  ( ph  ->  ( ( A M K ) M ( A M L ) )  =  ( L M K ) )
177176fveq2d 5692 . . . . . . . . 9  |-  ( ph  ->  ( N `  (
( A M K ) M ( A M L ) ) )  =  ( N `
 ( L M K ) ) )
178172, 174, 1773eqtr4d 2483 . . . . . . . 8  |-  ( ph  ->  ( K D L )  =  ( N `
 ( ( A M K ) M ( A M L ) ) ) )
179178oveq1d 6105 . . . . . . 7  |-  ( ph  ->  ( ( K D L ) ^ 2 )  =  ( ( N `  ( ( A M K ) M ( A M L ) ) ) ^ 2 ) )
180170, 179oveq12d 6108 . . . . . 6  |-  ( ph  ->  ( ( 4  x.  ( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) ^ 2 ) )  +  ( ( K D L ) ^ 2 ) )  =  ( ( ( N `  (
( A M K ) ( +v `  U ) ( A M L ) ) ) ^ 2 )  +  ( ( N `
 ( ( A M K ) M ( A M L ) ) ) ^
2 ) ) )
1813, 4, 5, 10imsdval 24012 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  K  e.  X )  ->  ( A D K )  =  ( N `  ( A M K ) ) )
18229, 9, 38, 181syl3anc 1213 . . . . . . . . 9  |-  ( ph  ->  ( A D K )  =  ( N `
 ( A M K ) ) )
183182oveq1d 6105 . . . . . . . 8  |-  ( ph  ->  ( ( A D K ) ^ 2 )  =  ( ( N `  ( A M K ) ) ^ 2 ) )
1843, 4, 5, 10imsdval 24012 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  L  e.  X )  ->  ( A D L )  =  ( N `  ( A M L ) ) )
18529, 9, 40, 184syl3anc 1213 . . . . . . . . 9  |-  ( ph  ->  ( A D L )  =  ( N `
 ( A M L ) ) )
186185oveq1d 6105 . . . . . . . 8  |-  ( ph  ->  ( ( A D L ) ^ 2 )  =  ( ( N `  ( A M L ) ) ^ 2 ) )
187183, 186oveq12d 6108 . . . . . . 7  |-  ( ph  ->  ( ( ( A D K ) ^
2 )  +  ( ( A D L ) ^ 2 ) )  =  ( ( ( N `  ( A M K ) ) ^ 2 )  +  ( ( N `  ( A M L ) ) ^ 2 ) ) )
188187oveq2d 6106 . . . . . 6  |-  ( ph  ->  ( 2  x.  (
( ( A D K ) ^ 2 )  +  ( ( A D L ) ^ 2 ) ) )  =  ( 2  x.  ( ( ( N `  ( A M K ) ) ^ 2 )  +  ( ( N `  ( A M L ) ) ^ 2 ) ) ) )
189132, 180, 1883eqtr4d 2483 . . . . 5  |-  ( ph  ->  ( ( 4  x.  ( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) ^ 2 ) )  +  ( ( K D L ) ^ 2 ) )  =  ( 2  x.  ( ( ( A D K ) ^ 2 )  +  ( ( A D L ) ^ 2 ) ) ) )
190 2t2e4 10467 . . . . . . 7  |-  ( 2  x.  2 )  =  4
191190oveq1i 6100 . . . . . 6  |-  ( ( 2  x.  2 )  x.  ( ( S ^ 2 )  +  B ) )  =  ( 4  x.  (
( S ^ 2 )  +  B ) )
192140, 140, 114mulassd 9405 . . . . . 6  |-  ( ph  ->  ( ( 2  x.  2 )  x.  (
( S ^ 2 )  +  B ) )  =  ( 2  x.  ( 2  x.  ( ( S ^
2 )  +  B
) ) ) )
193191, 192syl5eqr 2487 . . . . 5  |-  ( ph  ->  ( 4  x.  (
( S ^ 2 )  +  B ) )  =  ( 2  x.  ( 2  x.  ( ( S ^
2 )  +  B
) ) ) )
194126, 189, 1933brtr4d 4319 . . . 4  |-  ( ph  ->  ( ( 4  x.  ( ( N `  ( A M ( ( 1  /  2 ) ( .sOLD `  U ) ( K ( +v `  U
) L ) ) ) ) ^ 2 ) )  +  ( ( K D L ) ^ 2 ) )  <_  ( 4  x.  ( ( S ^ 2 )  +  B ) ) )
19544, 72, 76, 104, 194letrd 9524 . . 3  |-  ( ph  ->  ( ( 4  x.  ( S ^ 2 ) )  +  ( ( K D L ) ^ 2 ) )  <_  ( 4  x.  ( ( S ^ 2 )  +  B ) ) )
196 4cn 10395 . . . . 5  |-  4  e.  CC
197196a1i 11 . . . 4  |-  ( ph  ->  4  e.  CC )
19825recnd 9408 . . . 4  |-  ( ph  ->  ( S ^ 2 )  e.  CC )
19973recnd 9408 . . . 4  |-  ( ph  ->  B  e.  CC )
200197, 198, 199adddid 9406 . . 3  |-  ( ph  ->  ( 4  x.  (
( S ^ 2 )  +  B ) )  =  ( ( 4  x.  ( S ^ 2 ) )  +  ( 4  x.  B ) ) )
201195, 200breqtrd 4313 . 2  |-  ( ph  ->  ( ( 4  x.  ( S ^ 2 ) )  +  ( ( K D L ) ^ 2 ) )  <_  ( (
4  x.  ( S ^ 2 ) )  +  ( 4  x.  B ) ) )
202 remulcl 9363 . . . 4  |-  ( ( 4  e.  RR  /\  B  e.  RR )  ->  ( 4  x.  B
)  e.  RR )
2031, 73, 202sylancr 658 . . 3  |-  ( ph  ->  ( 4  x.  B
)  e.  RR )
20443, 203, 27leadd2d 9930 . 2  |-  ( ph  ->  ( ( ( K D L ) ^
2 )  <_  (
4  x.  B )  <-> 
( ( 4  x.  ( S ^ 2 ) )  +  ( ( K D L ) ^ 2 ) )  <_  ( (
4  x.  ( S ^ 2 ) )  +  ( 4  x.  B ) ) ) )
205201, 204mpbird 232 1  |-  ( ph  ->  ( ( K D L ) ^ 2 )  <_  ( 4  x.  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761    =/= wne 2604   A.wral 2713   E.wrex 2714    i^i cin 3324    C_ wss 3325   (/)c0 3634   class class class wbr 4289    e. cmpt 4347   `'ccnv 4835   ran crn 4837   ` cfv 5415  (class class class)co 6090   supcsup 7686   CCcc 9276   RRcr 9277   0cc0 9278   1c1 9279    + caddc 9281    x. cmul 9283    < clt 9414    <_ cle 9415    / cdiv 9989   2c2 10367   4c4 10369   ^cexp 11861   abscabs 12719   Metcme 17761   MetOpencmopn 17765   NrmCVeccnv 23897   +vcpv 23898   BaseSetcba 23899   .sOLDcns 23900   -vcnsb 23902   normCVcnmcv 23903   IndMetcims 23904   SubSpcss 24054   CPreHil OLDccphlo 24147   CBanccbn 24198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356  ax-addf 9357  ax-mulf 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-er 7097  df-map 7212  df-en 7307  df-dom 7308  df-sdom 7309  df-sup 7687  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-n0 10576  df-z 10643  df-uz 10858  df-rp 10988  df-xadd 11086  df-seq 11803  df-exp 11862  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-xmet 17769  df-met 17770  df-grpo 23613  df-gid 23614  df-ginv 23615  df-gdiv 23616  df-ablo 23704  df-vc 23859  df-nv 23905  df-va 23908  df-ba 23909  df-sm 23910  df-0v 23911  df-vs 23912  df-nmcv 23913  df-ims 23914  df-ssp 24055  df-ph 24148  df-cbn 24199
This theorem is referenced by:  minvecolem3  24212  minvecolem7  24219
  Copyright terms: Public domain W3C validator