Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveco Structured version   Unicode version

Theorem minveco 25926
 Description: Minimizing vector theorem, or the Hilbert projection theorem. There is exactly one vector in a complete subspace that minimizes the distance to an arbitrary vector in a parent inner product space. Theorem 3.3-1 of [Kreyszig] p. 144, specialized to subspaces instead of convex subsets. (Contributed by NM, 11-Apr-2008.) (Proof shortened by Mario Carneiro, 9-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x
minveco.m
minveco.n CV
minveco.y
minveco.u
minveco.w
minveco.a
Assertion
Ref Expression
minveco
Distinct variable groups:   ,,   ,,   ,,   ,,   ,,   ,,   ,   ,,
Allowed substitution hint:   ()

Proof of Theorem minveco
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 minveco.x . 2
2 minveco.m . 2
3 minveco.n . 2 CV
4 minveco.y . 2
5 minveco.u . 2
6 minveco.w . 2
7 minveco.a . 2
8 eqid 2457 . 2
9 eqid 2457 . 2
10 oveq2 6304 . . . . 5
1110fveq2d 5876 . . . 4
1211cbvmptv 4548 . . 3
1312rneqi 5239 . 2
14 eqid 2457 . 2
151, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14minvecolem7 25925 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wceq 1395   wcel 1819  wral 2807  wreu 2809   cin 3470   class class class wbr 4456   cmpt 4515  ccnv 5007   crn 5009  cfv 5594  (class class class)co 6296  csup 7918  cr 9508   clt 9645   cle 9646  cmopn 18534  cba 25605  cnsb 25608  CVcnmcv 25609  cims 25610  css 25760  ccphlo 25853  ccbn 25904 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cc 8832  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587  ax-addf 9588  ax-mulf 9589 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-oadd 7152  df-er 7329  df-map 7440  df-pm 7441  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-fi 7889  df-sup 7919  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-n0 10817  df-z 10886  df-uz 11107  df-q 11208  df-rp 11246  df-xneg 11343  df-xadd 11344  df-xmul 11345  df-ico 11560  df-icc 11561  df-fl 11931  df-seq 12110  df-exp 12169  df-cj 12943  df-re 12944  df-im 12945  df-sqrt 13079  df-abs 13080  df-rest 14839  df-topgen 14860  df-psmet 18537  df-xmet 18538  df-met 18539  df-bl 18540  df-mopn 18541  df-fbas 18542  df-fg 18543  df-top 19525  df-bases 19527  df-topon 19528  df-cld 19646  df-ntr 19647  df-cls 19648  df-nei 19725  df-lm 19856  df-haus 19942  df-fil 20472  df-fm 20564  df-flim 20565  df-flf 20566  df-cfil 21819  df-cau 21820  df-cmet 21821  df-grpo 25319  df-gid 25320  df-ginv 25321  df-gdiv 25322  df-ablo 25410  df-vc 25565  df-nv 25611  df-va 25614  df-ba 25615  df-sm 25616  df-0v 25617  df-vs 25618  df-nmcv 25619  df-ims 25620  df-ssp 25761  df-ph 25854  df-cbn 25905 This theorem is referenced by:  pjhthlem2  26436
 Copyright terms: Public domain W3C validator