MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem7 Structured version   Unicode version

Theorem minveclem7 22142
Description: Lemma for minvec 22143. Since any two minimal points are distance zero away from each other, the minimal point is unique. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
minvec.x  |-  X  =  ( Base `  U
)
minvec.m  |-  .-  =  ( -g `  U )
minvec.n  |-  N  =  ( norm `  U
)
minvec.u  |-  ( ph  ->  U  e.  CPreHil )
minvec.y  |-  ( ph  ->  Y  e.  ( LSubSp `  U ) )
minvec.w  |-  ( ph  ->  ( Us  Y )  e. CMetSp )
minvec.a  |-  ( ph  ->  A  e.  X )
minvec.j  |-  J  =  ( TopOpen `  U )
minvec.r  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )
minvec.s  |-  S  =  sup ( R ,  RR ,  `'  <  )
minvec.d  |-  D  =  ( ( dist `  U
)  |`  ( X  X.  X ) )
Assertion
Ref Expression
minveclem7  |-  ( ph  ->  E! x  e.  Y  A. y  e.  Y  ( N `  ( A 
.-  x ) )  <_  ( N `  ( A  .-  y ) ) )
Distinct variable groups:    x, y,  .-    x, A, y    x, J, y    x, N, y    ph, x, y    x, R, y    x, U, y   
x, X, y    x, Y, y    x, D, y   
x, S, y

Proof of Theorem minveclem7
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 minvec.x . . 3  |-  X  =  ( Base `  U
)
2 minvec.m . . 3  |-  .-  =  ( -g `  U )
3 minvec.n . . 3  |-  N  =  ( norm `  U
)
4 minvec.u . . 3  |-  ( ph  ->  U  e.  CPreHil )
5 minvec.y . . 3  |-  ( ph  ->  Y  e.  ( LSubSp `  U ) )
6 minvec.w . . 3  |-  ( ph  ->  ( Us  Y )  e. CMetSp )
7 minvec.a . . 3  |-  ( ph  ->  A  e.  X )
8 minvec.j . . 3  |-  J  =  ( TopOpen `  U )
9 minvec.r . . 3  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )
10 minvec.s . . 3  |-  S  =  sup ( R ,  RR ,  `'  <  )
11 minvec.d . . 3  |-  D  =  ( ( dist `  U
)  |`  ( X  X.  X ) )
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11minveclem5 22140 . 2  |-  ( ph  ->  E. x  e.  Y  A. y  e.  Y  ( N `  ( A 
.-  x ) )  <_  ( N `  ( A  .-  y ) ) )
134ad2antrr 724 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  Y  /\  w  e.  Y )
)  /\  ( (
( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  /\  (
( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 ) ) )  ->  U  e.  CPreHil )
145ad2antrr 724 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  Y  /\  w  e.  Y )
)  /\  ( (
( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  /\  (
( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 ) ) )  ->  Y  e.  (
LSubSp `  U ) )
156ad2antrr 724 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  Y  /\  w  e.  Y )
)  /\  ( (
( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  /\  (
( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 ) ) )  ->  ( Us  Y )  e. CMetSp )
167ad2antrr 724 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  Y  /\  w  e.  Y )
)  /\  ( (
( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  /\  (
( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 ) ) )  ->  A  e.  X
)
17 0re 9626 . . . . . . 7  |-  0  e.  RR
1817a1i 11 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  Y  /\  w  e.  Y )
)  /\  ( (
( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  /\  (
( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 ) ) )  ->  0  e.  RR )
19 0le0 10666 . . . . . . 7  |-  0  <_  0
2019a1i 11 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  Y  /\  w  e.  Y )
)  /\  ( (
( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  /\  (
( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 ) ) )  ->  0  <_  0
)
21 simplrl 762 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  Y  /\  w  e.  Y )
)  /\  ( (
( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  /\  (
( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 ) ) )  ->  x  e.  Y
)
22 simplrr 763 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  Y  /\  w  e.  Y )
)  /\  ( (
( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  /\  (
( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 ) ) )  ->  w  e.  Y
)
23 simprl 756 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  Y  /\  w  e.  Y )
)  /\  ( (
( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  /\  (
( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 ) ) )  ->  ( ( A D x ) ^
2 )  <_  (
( S ^ 2 )  +  0 ) )
24 simprr 758 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  Y  /\  w  e.  Y )
)  /\  ( (
( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  /\  (
( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 ) ) )  ->  ( ( A D w ) ^
2 )  <_  (
( S ^ 2 )  +  0 ) )
251, 2, 3, 13, 14, 15, 16, 8, 9, 10, 11, 18, 20, 21, 22, 23, 24minveclem2 22133 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  Y  /\  w  e.  Y )
)  /\  ( (
( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  /\  (
( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 ) ) )  ->  ( ( x D w ) ^
2 )  <_  (
4  x.  0 ) )
2625ex 432 . . . 4  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( ( ( A D x ) ^ 2 )  <_ 
( ( S ^
2 )  +  0 )  /\  ( ( A D w ) ^ 2 )  <_ 
( ( S ^
2 )  +  0 ) )  ->  (
( x D w ) ^ 2 )  <_  ( 4  x.  0 ) ) )
271, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11minveclem6 22141 . . . . . 6  |-  ( (
ph  /\  x  e.  Y )  ->  (
( ( A D x ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  <->  A. y  e.  Y  ( N `  ( A  .-  x
) )  <_  ( N `  ( A  .-  y ) ) ) )
2827adantrr 715 . . . . 5  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( ( A D x ) ^
2 )  <_  (
( S ^ 2 )  +  0 )  <->  A. y  e.  Y  ( N `  ( A 
.-  x ) )  <_  ( N `  ( A  .-  y ) ) ) )
291, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11minveclem6 22141 . . . . . 6  |-  ( (
ph  /\  w  e.  Y )  ->  (
( ( A D w ) ^ 2 )  <_  ( ( S ^ 2 )  +  0 )  <->  A. y  e.  Y  ( N `  ( A  .-  w
) )  <_  ( N `  ( A  .-  y ) ) ) )
3029adantrl 714 . . . . 5  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( ( A D w ) ^
2 )  <_  (
( S ^ 2 )  +  0 )  <->  A. y  e.  Y  ( N `  ( A 
.-  w ) )  <_  ( N `  ( A  .-  y ) ) ) )
3128, 30anbi12d 709 . . . 4  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( ( ( A D x ) ^ 2 )  <_ 
( ( S ^
2 )  +  0 )  /\  ( ( A D w ) ^ 2 )  <_ 
( ( S ^
2 )  +  0 ) )  <->  ( A. y  e.  Y  ( N `  ( A  .-  x ) )  <_ 
( N `  ( A  .-  y ) )  /\  A. y  e.  Y  ( N `  ( A  .-  w ) )  <_  ( N `  ( A  .-  y
) ) ) ) )
32 4cn 10654 . . . . . . 7  |-  4  e.  CC
3332mul01i 9804 . . . . . 6  |-  ( 4  x.  0 )  =  0
3433breq2i 4403 . . . . 5  |-  ( ( ( x D w ) ^ 2 )  <_  ( 4  x.  0 )  <->  ( (
x D w ) ^ 2 )  <_ 
0 )
35 cphngp 21912 . . . . . . . . . . . 12  |-  ( U  e.  CPreHil  ->  U  e. NrmGrp )
36 ngpms 21412 . . . . . . . . . . . 12  |-  ( U  e. NrmGrp  ->  U  e.  MetSp )
374, 35, 363syl 18 . . . . . . . . . . 11  |-  ( ph  ->  U  e.  MetSp )
3837adantr 463 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  ->  U  e.  MetSp )
391, 11msmet 21252 . . . . . . . . . 10  |-  ( U  e.  MetSp  ->  D  e.  ( Met `  X ) )
4038, 39syl 17 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  ->  D  e.  ( Met `  X ) )
41 eqid 2402 . . . . . . . . . . . . 13  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
421, 41lssss 17903 . . . . . . . . . . . 12  |-  ( Y  e.  ( LSubSp `  U
)  ->  Y  C_  X
)
435, 42syl 17 . . . . . . . . . . 11  |-  ( ph  ->  Y  C_  X )
4443adantr 463 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  ->  Y  C_  X )
45 simprl 756 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  ->  x  e.  Y )
4644, 45sseldd 3443 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  ->  x  e.  X )
47 simprr 758 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  ->  w  e.  Y )
4844, 47sseldd 3443 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  ->  w  e.  X )
49 metcl 21127 . . . . . . . . 9  |-  ( ( D  e.  ( Met `  X )  /\  x  e.  X  /\  w  e.  X )  ->  (
x D w )  e.  RR )
5040, 46, 48, 49syl3anc 1230 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( x D w )  e.  RR )
5150sqge0d 12381 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
0  <_  ( (
x D w ) ^ 2 ) )
5251biantrud 505 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( ( x D w ) ^
2 )  <_  0  <->  ( ( ( x D w ) ^ 2 )  <_  0  /\  0  <_  ( ( x D w ) ^
2 ) ) ) )
5350resqcld 12380 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( x D w ) ^ 2 )  e.  RR )
54 letri3 9701 . . . . . . 7  |-  ( ( ( ( x D w ) ^ 2 )  e.  RR  /\  0  e.  RR )  ->  ( ( ( x D w ) ^
2 )  =  0  <-> 
( ( ( x D w ) ^
2 )  <_  0  /\  0  <_  ( ( x D w ) ^ 2 ) ) ) )
5553, 17, 54sylancl 660 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( ( x D w ) ^
2 )  =  0  <-> 
( ( ( x D w ) ^
2 )  <_  0  /\  0  <_  ( ( x D w ) ^ 2 ) ) ) )
5650recnd 9652 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( x D w )  e.  CC )
57 sqeq0 12277 . . . . . . . 8  |-  ( ( x D w )  e.  CC  ->  (
( ( x D w ) ^ 2 )  =  0  <->  (
x D w )  =  0 ) )
5856, 57syl 17 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( ( x D w ) ^
2 )  =  0  <-> 
( x D w )  =  0 ) )
59 meteq0 21134 . . . . . . . 8  |-  ( ( D  e.  ( Met `  X )  /\  x  e.  X  /\  w  e.  X )  ->  (
( x D w )  =  0  <->  x  =  w ) )
6040, 46, 48, 59syl3anc 1230 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( x D w )  =  0  <-> 
x  =  w ) )
6158, 60bitrd 253 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( ( x D w ) ^
2 )  =  0  <-> 
x  =  w ) )
6252, 55, 613bitr2d 281 . . . . 5  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( ( x D w ) ^
2 )  <_  0  <->  x  =  w ) )
6334, 62syl5bb 257 . . . 4  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( ( x D w ) ^
2 )  <_  (
4  x.  0 )  <-> 
x  =  w ) )
6426, 31, 633imtr3d 267 . . 3  |-  ( (
ph  /\  ( x  e.  Y  /\  w  e.  Y ) )  -> 
( ( A. y  e.  Y  ( N `  ( A  .-  x
) )  <_  ( N `  ( A  .-  y ) )  /\  A. y  e.  Y  ( N `  ( A 
.-  w ) )  <_  ( N `  ( A  .-  y ) ) )  ->  x  =  w ) )
6564ralrimivva 2825 . 2  |-  ( ph  ->  A. x  e.  Y  A. w  e.  Y  ( ( A. y  e.  Y  ( N `  ( A  .-  x
) )  <_  ( N `  ( A  .-  y ) )  /\  A. y  e.  Y  ( N `  ( A 
.-  w ) )  <_  ( N `  ( A  .-  y ) ) )  ->  x  =  w ) )
66 oveq2 6286 . . . . . 6  |-  ( x  =  w  ->  ( A  .-  x )  =  ( A  .-  w
) )
6766fveq2d 5853 . . . . 5  |-  ( x  =  w  ->  ( N `  ( A  .-  x ) )  =  ( N `  ( A  .-  w ) ) )
6867breq1d 4405 . . . 4  |-  ( x  =  w  ->  (
( N `  ( A  .-  x ) )  <_  ( N `  ( A  .-  y ) )  <->  ( N `  ( A  .-  w ) )  <_  ( N `  ( A  .-  y
) ) ) )
6968ralbidv 2843 . . 3  |-  ( x  =  w  ->  ( A. y  e.  Y  ( N `  ( A 
.-  x ) )  <_  ( N `  ( A  .-  y ) )  <->  A. y  e.  Y  ( N `  ( A 
.-  w ) )  <_  ( N `  ( A  .-  y ) ) ) )
7069reu4 3243 . 2  |-  ( E! x  e.  Y  A. y  e.  Y  ( N `  ( A  .-  x ) )  <_ 
( N `  ( A  .-  y ) )  <-> 
( E. x  e.  Y  A. y  e.  Y  ( N `  ( A  .-  x ) )  <_  ( N `  ( A  .-  y
) )  /\  A. x  e.  Y  A. w  e.  Y  (
( A. y  e.  Y  ( N `  ( A  .-  x ) )  <_  ( N `  ( A  .-  y
) )  /\  A. y  e.  Y  ( N `  ( A  .-  w ) )  <_ 
( N `  ( A  .-  y ) ) )  ->  x  =  w ) ) )
7112, 65, 70sylanbrc 662 1  |-  ( ph  ->  E! x  e.  Y  A. y  e.  Y  ( N `  ( A 
.-  x ) )  <_  ( N `  ( A  .-  y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1405    e. wcel 1842   A.wral 2754   E.wrex 2755   E!wreu 2756    C_ wss 3414   class class class wbr 4395    |-> cmpt 4453    X. cxp 4821   `'ccnv 4822   ran crn 4824    |` cres 4825   ` cfv 5569  (class class class)co 6278   supcsup 7934   CCcc 9520   RRcr 9521   0cc0 9522    + caddc 9525    x. cmul 9527    < clt 9658    <_ cle 9659   2c2 10626   4c4 10628   ^cexp 12210   Basecbs 14841   ↾s cress 14842   distcds 14918   TopOpenctopn 15036   -gcsg 16379   LSubSpclss 17898   Metcme 18724   MetSpcmt 21113   normcnm 21389  NrmGrpcngp 21390   CPreHilccph 21905  CMetSpccms 22063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-inf2 8091  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599  ax-pre-sup 9600  ax-addf 9601  ax-mulf 9602
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-iin 4274  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-isom 5578  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-1st 6784  df-2nd 6785  df-tpos 6958  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-1o 7167  df-oadd 7171  df-er 7348  df-map 7459  df-en 7555  df-dom 7556  df-sdom 7557  df-fin 7558  df-fi 7905  df-sup 7935  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-div 10248  df-nn 10577  df-2 10635  df-3 10636  df-4 10637  df-5 10638  df-6 10639  df-7 10640  df-8 10641  df-9 10642  df-10 10643  df-n0 10837  df-z 10906  df-dec 11020  df-uz 11128  df-q 11228  df-rp 11266  df-xneg 11371  df-xadd 11372  df-xmul 11373  df-ico 11588  df-icc 11589  df-fz 11727  df-seq 12152  df-exp 12211  df-cj 13081  df-re 13082  df-im 13083  df-sqrt 13217  df-abs 13218  df-struct 14843  df-ndx 14844  df-slot 14845  df-base 14846  df-sets 14847  df-ress 14848  df-plusg 14922  df-mulr 14923  df-starv 14924  df-sca 14925  df-vsca 14926  df-ip 14927  df-tset 14928  df-ple 14929  df-ds 14931  df-unif 14932  df-rest 15037  df-0g 15056  df-topgen 15058  df-mgm 16196  df-sgrp 16235  df-mnd 16245  df-mhm 16290  df-grp 16381  df-minusg 16382  df-sbg 16383  df-mulg 16384  df-subg 16522  df-ghm 16589  df-cmn 17124  df-abl 17125  df-mgp 17462  df-ur 17474  df-ring 17520  df-cring 17521  df-oppr 17592  df-dvdsr 17610  df-unit 17611  df-invr 17641  df-dvr 17652  df-rnghom 17684  df-drng 17718  df-subrg 17747  df-staf 17814  df-srng 17815  df-lmod 17834  df-lss 17899  df-lmhm 17988  df-lvec 18069  df-sra 18138  df-rgmod 18139  df-psmet 18731  df-xmet 18732  df-met 18733  df-bl 18734  df-mopn 18735  df-fbas 18736  df-fg 18737  df-cnfld 18741  df-phl 18959  df-top 19691  df-bases 19693  df-topon 19694  df-topsp 19695  df-cld 19812  df-ntr 19813  df-cls 19814  df-nei 19892  df-haus 20109  df-fil 20639  df-flim 20732  df-xms 21115  df-ms 21116  df-nm 21395  df-ngp 21396  df-nlm 21399  df-clm 21855  df-cph 21907  df-cfil 21986  df-cmet 21988  df-cms 22066
This theorem is referenced by:  minvec  22143
  Copyright terms: Public domain W3C validator