MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem4 Structured version   Unicode version

Theorem minveclem4 21610
Description: Lemma for minvec 21614. The convergent point of the Cauchy sequence  F attains the minimum distance, and so is closer to  A than any other point in  Y. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
minvec.x  |-  X  =  ( Base `  U
)
minvec.m  |-  .-  =  ( -g `  U )
minvec.n  |-  N  =  ( norm `  U
)
minvec.u  |-  ( ph  ->  U  e.  CPreHil )
minvec.y  |-  ( ph  ->  Y  e.  ( LSubSp `  U ) )
minvec.w  |-  ( ph  ->  ( Us  Y )  e. CMetSp )
minvec.a  |-  ( ph  ->  A  e.  X )
minvec.j  |-  J  =  ( TopOpen `  U )
minvec.r  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )
minvec.s  |-  S  =  sup ( R ,  RR ,  `'  <  )
minvec.d  |-  D  =  ( ( dist `  U
)  |`  ( X  X.  X ) )
minvec.f  |-  F  =  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_ 
( ( S ^
2 )  +  r ) } )
minvec.p  |-  P  = 
U. ( J  fLim  ( X filGen F ) )
minvec.t  |-  T  =  ( ( ( ( ( A D P )  +  S )  /  2 ) ^
2 )  -  ( S ^ 2 ) )
Assertion
Ref Expression
minveclem4  |-  ( ph  ->  E. x  e.  Y  A. y  e.  Y  ( N `  ( A 
.-  x ) )  <_  ( N `  ( A  .-  y ) ) )
Distinct variable groups:    x, y,  .-    x, r, y, A    J, r, x, y    x, P, y    x, F, y   
x, N, y    ph, r, x, y    x, R, y   
x, U, y    X, r, x, y    Y, r, x, y    D, r, x, y    S, r, x, y    T, r, y
Allowed substitution hints:    P( r)    R( r)    T( x)    U( r)    F( r)    .- ( r)    N( r)

Proof of Theorem minveclem4
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 inss2 3719 . . 3  |-  ( ( J  fLim  ( X filGen F ) )  i^i 
Y )  C_  Y
2 minvec.x . . . 4  |-  X  =  ( Base `  U
)
3 minvec.m . . . 4  |-  .-  =  ( -g `  U )
4 minvec.n . . . 4  |-  N  =  ( norm `  U
)
5 minvec.u . . . 4  |-  ( ph  ->  U  e.  CPreHil )
6 minvec.y . . . 4  |-  ( ph  ->  Y  e.  ( LSubSp `  U ) )
7 minvec.w . . . 4  |-  ( ph  ->  ( Us  Y )  e. CMetSp )
8 minvec.a . . . 4  |-  ( ph  ->  A  e.  X )
9 minvec.j . . . 4  |-  J  =  ( TopOpen `  U )
10 minvec.r . . . 4  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )
11 minvec.s . . . 4  |-  S  =  sup ( R ,  RR ,  `'  <  )
12 minvec.d . . . 4  |-  D  =  ( ( dist `  U
)  |`  ( X  X.  X ) )
13 minvec.f . . . 4  |-  F  =  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_ 
( ( S ^
2 )  +  r ) } )
14 minvec.p . . . 4  |-  P  = 
U. ( J  fLim  ( X filGen F ) )
152, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14minveclem4a 21608 . . 3  |-  ( ph  ->  P  e.  ( ( J  fLim  ( X filGen F ) )  i^i 
Y ) )
161, 15sseldi 3502 . 2  |-  ( ph  ->  P  e.  Y )
1712oveqi 6297 . . . . . . 7  |-  ( A D P )  =  ( A ( (
dist `  U )  |`  ( X  X.  X
) ) P )
182, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14minveclem4b 21609 . . . . . . . 8  |-  ( ph  ->  P  e.  X )
198, 18ovresd 6427 . . . . . . 7  |-  ( ph  ->  ( A ( (
dist `  U )  |`  ( X  X.  X
) ) P )  =  ( A (
dist `  U ) P ) )
2017, 19syl5eq 2520 . . . . . 6  |-  ( ph  ->  ( A D P )  =  ( A ( dist `  U
) P ) )
21 cphngp 21383 . . . . . . . 8  |-  ( U  e.  CPreHil  ->  U  e. NrmGrp )
225, 21syl 16 . . . . . . 7  |-  ( ph  ->  U  e. NrmGrp )
23 eqid 2467 . . . . . . . 8  |-  ( dist `  U )  =  (
dist `  U )
244, 2, 3, 23ngpds 20886 . . . . . . 7  |-  ( ( U  e. NrmGrp  /\  A  e.  X  /\  P  e.  X )  ->  ( A ( dist `  U
) P )  =  ( N `  ( A  .-  P ) ) )
2522, 8, 18, 24syl3anc 1228 . . . . . 6  |-  ( ph  ->  ( A ( dist `  U ) P )  =  ( N `  ( A  .-  P ) ) )
2620, 25eqtrd 2508 . . . . 5  |-  ( ph  ->  ( A D P )  =  ( N `
 ( A  .-  P ) ) )
2726adantr 465 . . . 4  |-  ( (
ph  /\  y  e.  Y )  ->  ( A D P )  =  ( N `  ( A  .-  P ) ) )
28 ngpms 20883 . . . . . . . 8  |-  ( U  e. NrmGrp  ->  U  e.  MetSp )
292, 12msmet 20723 . . . . . . . 8  |-  ( U  e.  MetSp  ->  D  e.  ( Met `  X ) )
3022, 28, 293syl 20 . . . . . . 7  |-  ( ph  ->  D  e.  ( Met `  X ) )
31 metcl 20598 . . . . . . 7  |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  P  e.  X )  ->  ( A D P )  e.  RR )
3230, 8, 18, 31syl3anc 1228 . . . . . 6  |-  ( ph  ->  ( A D P )  e.  RR )
3332adantr 465 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  ( A D P )  e.  RR )
342, 3, 4, 5, 6, 7, 8, 9, 10, 11minveclem4c 21603 . . . . . 6  |-  ( ph  ->  S  e.  RR )
3534adantr 465 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  S  e.  RR )
3622adantr 465 . . . . . 6  |-  ( (
ph  /\  y  e.  Y )  ->  U  e. NrmGrp )
37 cphlmod 21384 . . . . . . . . 9  |-  ( U  e.  CPreHil  ->  U  e.  LMod )
385, 37syl 16 . . . . . . . 8  |-  ( ph  ->  U  e.  LMod )
3938adantr 465 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  U  e.  LMod )
408adantr 465 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  A  e.  X )
41 eqid 2467 . . . . . . . . . 10  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
422, 41lssss 17383 . . . . . . . . 9  |-  ( Y  e.  ( LSubSp `  U
)  ->  Y  C_  X
)
436, 42syl 16 . . . . . . . 8  |-  ( ph  ->  Y  C_  X )
4443sselda 3504 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  y  e.  X )
452, 3lmodvsubcl 17355 . . . . . . 7  |-  ( ( U  e.  LMod  /\  A  e.  X  /\  y  e.  X )  ->  ( A  .-  y )  e.  X )
4639, 40, 44, 45syl3anc 1228 . . . . . 6  |-  ( (
ph  /\  y  e.  Y )  ->  ( A  .-  y )  e.  X )
472, 4nmcl 20898 . . . . . 6  |-  ( ( U  e. NrmGrp  /\  ( A  .-  y )  e.  X )  ->  ( N `  ( A  .-  y ) )  e.  RR )
4836, 46, 47syl2anc 661 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  ( N `  ( A  .-  y ) )  e.  RR )
4934, 32ltnled 9731 . . . . . . . 8  |-  ( ph  ->  ( S  <  ( A D P )  <->  -.  ( A D P )  <_  S ) )
502, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13minveclem3b 21606 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  F  e.  ( fBas `  Y ) )
51 fbsspw 20096 . . . . . . . . . . . . . . . . . . . 20  |-  ( F  e.  ( fBas `  Y
)  ->  F  C_  ~P Y )
5250, 51syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  F  C_  ~P Y
)
53 sspwb 4696 . . . . . . . . . . . . . . . . . . . 20  |-  ( Y 
C_  X  <->  ~P Y  C_ 
~P X )
5443, 53sylib 196 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ~P Y  C_  ~P X )
5552, 54sstrd 3514 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  F  C_  ~P X
)
56 fvex 5876 . . . . . . . . . . . . . . . . . . . 20  |-  ( Base `  U )  e.  _V
572, 56eqeltri 2551 . . . . . . . . . . . . . . . . . . 19  |-  X  e. 
_V
5857a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  X  e.  _V )
59 fbasweak 20129 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  e.  ( fBas `  Y )  /\  F  C_ 
~P X  /\  X  e.  _V )  ->  F  e.  ( fBas `  X
) )
6050, 55, 58, 59syl3anc 1228 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  F  e.  ( fBas `  X ) )
6160adantr 465 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  F  e.  ( fBas `  X )
)
62 fgcl 20142 . . . . . . . . . . . . . . . 16  |-  ( F  e.  ( fBas `  X
)  ->  ( X filGen F )  e.  ( Fil `  X ) )
6361, 62syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  ( X filGen F )  e.  ( Fil `  X ) )
64 ssfg 20136 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  ( fBas `  X
)  ->  F  C_  ( X filGen F ) )
6561, 64syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  F  C_  ( X filGen F ) )
66 minvec.t . . . . . . . . . . . . . . . . . . 19  |-  T  =  ( ( ( ( ( A D P )  +  S )  /  2 ) ^
2 )  -  ( S ^ 2 ) )
6732, 34readdcld 9623 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( ( A D P )  +  S
)  e.  RR )
6867rehalfcld 10785 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( ( ( A D P )  +  S )  /  2
)  e.  RR )
6968resqcld 12304 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( ( ( A D P )  +  S )  / 
2 ) ^ 2 )  e.  RR )
7034resqcld 12304 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( S ^ 2 )  e.  RR )
7169, 70resubcld 9987 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( ( ( ( A D P )  +  S )  /  2 ) ^
2 )  -  ( S ^ 2 ) )  e.  RR )
7271adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  ( (
( ( ( A D P )  +  S )  /  2
) ^ 2 )  -  ( S ^
2 ) )  e.  RR )
7334, 32, 34ltadd1d 10145 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( S  <  ( A D P )  <->  ( S  +  S )  <  (
( A D P )  +  S ) ) )
7434recnd 9622 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  S  e.  CC )
75742timesd 10781 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( 2  x.  S
)  =  ( S  +  S ) )
7675breq1d 4457 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( ( 2  x.  S )  <  (
( A D P )  +  S )  <-> 
( S  +  S
)  <  ( ( A D P )  +  S ) ) )
77 2re 10605 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  2  e.  RR
78 2pos 10627 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  0  <  2
7977, 78pm3.2i 455 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( 2  e.  RR  /\  0  <  2 )
8079a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( 2  e.  RR  /\  0  <  2 ) )
81 ltmuldiv2 10416 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( S  e.  RR  /\  ( ( A D P )  +  S
)  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( (
2  x.  S )  <  ( ( A D P )  +  S )  <->  S  <  ( ( ( A D P )  +  S
)  /  2 ) ) )
8234, 67, 80, 81syl3anc 1228 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( ( 2  x.  S )  <  (
( A D P )  +  S )  <-> 
S  <  ( (
( A D P )  +  S )  /  2 ) ) )
8373, 76, 823bitr2d 281 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( S  <  ( A D P )  <->  S  <  ( ( ( A D P )  +  S
)  /  2 ) ) )
842, 3, 4, 5, 6, 7, 8, 9, 10minveclem1 21602 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  ( R  C_  RR  /\  R  =/=  (/)  /\  A. w  e.  R  0  <_  w ) )
8584simp3d 1010 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  A. w  e.  R 
0  <_  w )
8684simp1d 1008 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  R  C_  RR )
8784simp2d 1009 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  R  =/=  (/) )
88 0re 9596 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  0  e.  RR
89 breq1 4450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( x  =  0  ->  (
x  <_  w  <->  0  <_  w ) )
9089ralbidv 2903 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( x  =  0  ->  ( A. w  e.  R  x  <_  w  <->  A. w  e.  R  0  <_  w ) )
9190rspcev 3214 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( 0  e.  RR  /\  A. w  e.  R  0  <_  w )  ->  E. x  e.  RR  A. w  e.  R  x  <_  w )
9288, 85, 91sylancr 663 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  E. x  e.  RR  A. w  e.  R  x  <_  w )
9388a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  0  e.  RR )
94 infmrgelb 10523 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( R  C_  RR  /\  R  =/=  (/)  /\  E. x  e.  RR  A. w  e.  R  x  <_  w )  /\  0  e.  RR )  ->  (
0  <_  sup ( R ,  RR ,  `'  <  )  <->  A. w  e.  R  0  <_  w ) )
9586, 87, 92, 93, 94syl31anc 1231 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( 0  <_  sup ( R ,  RR ,  `'  <  )  <->  A. w  e.  R  0  <_  w ) )
9685, 95mpbird 232 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  0  <_  sup ( R ,  RR ,  `'  <  ) )
9796, 11syl6breqr 4487 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  0  <_  S )
98 metge0 20611 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  P  e.  X )  ->  0  <_  ( A D P ) )
9930, 8, 18, 98syl3anc 1228 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  0  <_  ( A D P ) )
10032, 34, 99, 97addge0d 10128 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  0  <_  ( ( A D P )  +  S ) )
101 divge0 10411 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( A D P )  +  S )  e.  RR  /\  0  <_  ( ( A D P )  +  S ) )  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  0  <_  ( ( ( A D P )  +  S
)  /  2 ) )
10267, 100, 80, 101syl21anc 1227 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  0  <_  ( (
( A D P )  +  S )  /  2 ) )
10334, 68, 97, 102lt2sqd 12312 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( S  <  (
( ( A D P )  +  S
)  /  2 )  <-> 
( S ^ 2 )  <  ( ( ( ( A D P )  +  S
)  /  2 ) ^ 2 ) ) )
10470, 69posdifd 10139 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( S ^
2 )  <  (
( ( ( A D P )  +  S )  /  2
) ^ 2 )  <->  0  <  ( ( ( ( ( A D P )  +  S )  /  2
) ^ 2 )  -  ( S ^
2 ) ) ) )
10583, 103, 1043bitrd 279 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( S  <  ( A D P )  <->  0  <  ( ( ( ( ( A D P )  +  S )  / 
2 ) ^ 2 )  -  ( S ^ 2 ) ) ) )
106105biimpa 484 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  0  <  ( ( ( ( ( A D P )  +  S )  / 
2 ) ^ 2 )  -  ( S ^ 2 ) ) )
10772, 106elrpd 11254 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  ( (
( ( ( A D P )  +  S )  /  2
) ^ 2 )  -  ( S ^
2 ) )  e.  RR+ )
10866, 107syl5eqel 2559 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  T  e.  RR+ )
1096adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  Y  e.  ( LSubSp `  U )
)
110 rabexg 4597 . . . . . . . . . . . . . . . . . . 19  |-  ( Y  e.  ( LSubSp `  U
)  ->  { y  e.  Y  |  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  e.  _V )
111109, 110syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  Y  |  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  e.  _V )
112 eqid 2467 . . . . . . . . . . . . . . . . . . 19  |-  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  r ) } )  =  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_ 
( ( S ^
2 )  +  r ) } )
113 oveq2 6292 . . . . . . . . . . . . . . . . . . . . 21  |-  ( r  =  T  ->  (
( S ^ 2 )  +  r )  =  ( ( S ^ 2 )  +  T ) )
114113breq2d 4459 . . . . . . . . . . . . . . . . . . . 20  |-  ( r  =  T  ->  (
( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  r )  <->  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  T ) ) )
115114rabbidv 3105 . . . . . . . . . . . . . . . . . . 19  |-  ( r  =  T  ->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  r ) }  =  { y  e.  Y  |  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  T ) } )
116112, 115elrnmpt1s 5250 . . . . . . . . . . . . . . . . . 18  |-  ( ( T  e.  RR+  /\  {
y  e.  Y  | 
( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  e.  _V )  ->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  e.  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  r ) } ) )
117108, 111, 116syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  Y  |  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  e.  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  r ) } ) )
118117, 13syl6eleqr 2566 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  Y  |  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  e.  F )
11965, 118sseldd 3505 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  Y  |  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  e.  ( X filGen F ) )
120 ssrab2 3585 . . . . . . . . . . . . . . . 16  |-  { y  e.  X  |  ( A D y )  <_  ( ( ( A D P )  +  S )  / 
2 ) }  C_  X
121120a1i 11 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  X  |  ( A D y )  <_ 
( ( ( A D P )  +  S )  /  2
) }  C_  X
)
12266oveq2i 6295 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( S ^ 2 )  +  T )  =  ( ( S ^
2 )  +  ( ( ( ( ( A D P )  +  S )  / 
2 ) ^ 2 )  -  ( S ^ 2 ) ) )
12370ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  ( S ^ 2 )  e.  RR )
124123recnd 9622 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  ( S ^ 2 )  e.  CC )
12568ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  (
( ( A D P )  +  S
)  /  2 )  e.  RR )
126125resqcld 12304 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  (
( ( ( A D P )  +  S )  /  2
) ^ 2 )  e.  RR )
127126recnd 9622 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  (
( ( ( A D P )  +  S )  /  2
) ^ 2 )  e.  CC )
128124, 127pncan3d 9933 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  (
( S ^ 2 )  +  ( ( ( ( ( A D P )  +  S )  /  2
) ^ 2 )  -  ( S ^
2 ) ) )  =  ( ( ( ( A D P )  +  S )  /  2 ) ^
2 ) )
129122, 128syl5eq 2520 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  (
( S ^ 2 )  +  T )  =  ( ( ( ( A D P )  +  S )  /  2 ) ^
2 ) )
130129breq2d 4459 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  (
( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T )  <->  ( ( A D y ) ^
2 )  <_  (
( ( ( A D P )  +  S )  /  2
) ^ 2 ) ) )
13130ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  D  e.  ( Met `  X
) )
1328ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  A  e.  X )
13344adantlr 714 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  y  e.  X )
134 metcl 20598 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  y  e.  X )  ->  ( A D y )  e.  RR )
135131, 132, 133, 134syl3anc 1228 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  ( A D y )  e.  RR )
136 metge0 20611 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  y  e.  X )  ->  0  <_  ( A D y ) )
137131, 132, 133, 136syl3anc 1228 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  0  <_  ( A D y ) )
138102ad2antrr 725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  0  <_  ( ( ( A D P )  +  S )  /  2
) )
139135, 125, 137, 138le2sqd 12313 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  (
( A D y )  <_  ( (
( A D P )  +  S )  /  2 )  <->  ( ( A D y ) ^
2 )  <_  (
( ( ( A D P )  +  S )  /  2
) ^ 2 ) ) )
140130, 139bitr4d 256 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  (
( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T )  <->  ( A D y )  <_ 
( ( ( A D P )  +  S )  /  2
) ) )
141140rabbidva 3104 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  Y  |  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  =  { y  e.  Y  |  ( A D y )  <_  (
( ( A D P )  +  S
)  /  2 ) } )
14243adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  Y  C_  X
)
143 rabss2 3583 . . . . . . . . . . . . . . . . 17  |-  ( Y 
C_  X  ->  { y  e.  Y  |  ( A D y )  <_  ( ( ( A D P )  +  S )  / 
2 ) }  C_  { y  e.  X  | 
( A D y )  <_  ( (
( A D P )  +  S )  /  2 ) } )
144142, 143syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  Y  |  ( A D y )  <_ 
( ( ( A D P )  +  S )  /  2
) }  C_  { y  e.  X  |  ( A D y )  <_  ( ( ( A D P )  +  S )  / 
2 ) } )
145141, 144eqsstrd 3538 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  Y  |  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  C_  { y  e.  X  | 
( A D y )  <_  ( (
( A D P )  +  S )  /  2 ) } )
146 filss 20117 . . . . . . . . . . . . . . 15  |-  ( ( ( X filGen F )  e.  ( Fil `  X
)  /\  ( {
y  e.  Y  | 
( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  e.  ( X filGen F )  /\  { y  e.  X  | 
( A D y )  <_  ( (
( A D P )  +  S )  /  2 ) } 
C_  X  /\  {
y  e.  Y  | 
( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  C_  { y  e.  X  | 
( A D y )  <_  ( (
( A D P )  +  S )  /  2 ) } ) )  ->  { y  e.  X  |  ( A D y )  <_  ( ( ( A D P )  +  S )  / 
2 ) }  e.  ( X filGen F ) )
14763, 119, 121, 145, 146syl13anc 1230 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  X  |  ( A D y )  <_ 
( ( ( A D P )  +  S )  /  2
) }  e.  ( X filGen F ) )
148 flimclsi 20242 . . . . . . . . . . . . . 14  |-  ( { y  e.  X  | 
( A D y )  <_  ( (
( A D P )  +  S )  /  2 ) }  e.  ( X filGen F )  ->  ( J  fLim  ( X filGen F ) )  C_  ( ( cls `  J ) `  { y  e.  X  |  ( A D y )  <_  (
( ( A D P )  +  S
)  /  2 ) } ) )
149147, 148syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  ( J  fLim  ( X filGen F ) )  C_  ( ( cls `  J ) `  { y  e.  X  |  ( A D y )  <_  (
( ( A D P )  +  S
)  /  2 ) } ) )
150 inss1 3718 . . . . . . . . . . . . . . 15  |-  ( ( J  fLim  ( X filGen F ) )  i^i 
Y )  C_  ( J  fLim  ( X filGen F ) )
151150, 15sseldi 3502 . . . . . . . . . . . . . 14  |-  ( ph  ->  P  e.  ( J 
fLim  ( X filGen F ) ) )
152151adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  P  e.  ( J  fLim  ( X
filGen F ) ) )
153149, 152sseldd 3505 . . . . . . . . . . . 12  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  P  e.  ( ( cls `  J
) `  { y  e.  X  |  ( A D y )  <_ 
( ( ( A D P )  +  S )  /  2
) } ) )
154 ngpxms 20884 . . . . . . . . . . . . . . . . 17  |-  ( U  e. NrmGrp  ->  U  e.  *MetSp )
1552, 12xmsxmet 20722 . . . . . . . . . . . . . . . . 17  |-  ( U  e.  *MetSp  ->  D  e.  ( *Met `  X ) )
15622, 154, 1553syl 20 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  D  e.  ( *Met `  X ) )
157156adantr 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  D  e.  ( *Met `  X
) )
1588adantr 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  A  e.  X )
15968adantr 465 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  ( (
( A D P )  +  S )  /  2 )  e.  RR )
160159rexrd 9643 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  ( (
( A D P )  +  S )  /  2 )  e. 
RR* )
161 eqid 2467 . . . . . . . . . . . . . . . 16  |-  ( MetOpen `  D )  =  (
MetOpen `  D )
162 eqid 2467 . . . . . . . . . . . . . . . 16  |-  { y  e.  X  |  ( A D y )  <_  ( ( ( A D P )  +  S )  / 
2 ) }  =  { y  e.  X  |  ( A D y )  <_  (
( ( A D P )  +  S
)  /  2 ) }
163161, 162blcld 20771 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  ( ( ( A D P )  +  S )  /  2
)  e.  RR* )  ->  { y  e.  X  |  ( A D y )  <_  (
( ( A D P )  +  S
)  /  2 ) }  e.  ( Clsd `  ( MetOpen `  D )
) )
164157, 158, 160, 163syl3anc 1228 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  X  |  ( A D y )  <_ 
( ( ( A D P )  +  S )  /  2
) }  e.  (
Clsd `  ( MetOpen `  D
) ) )
1659, 2, 12xmstopn 20717 . . . . . . . . . . . . . . . . 17  |-  ( U  e.  *MetSp  ->  J  =  ( MetOpen `  D
) )
16622, 154, 1653syl 20 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  J  =  ( MetOpen `  D ) )
167166adantr 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  J  =  ( MetOpen `  D )
)
168167fveq2d 5870 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  ( Clsd `  J )  =  (
Clsd `  ( MetOpen `  D
) ) )
169164, 168eleqtrrd 2558 . . . . . . . . . . . . 13  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  X  |  ( A D y )  <_ 
( ( ( A D P )  +  S )  /  2
) }  e.  (
Clsd `  J )
)
170 cldcls 19337 . . . . . . . . . . . . 13  |-  ( { y  e.  X  | 
( A D y )  <_  ( (
( A D P )  +  S )  /  2 ) }  e.  ( Clsd `  J
)  ->  ( ( cls `  J ) `  { y  e.  X  |  ( A D y )  <_  (
( ( A D P )  +  S
)  /  2 ) } )  =  {
y  e.  X  | 
( A D y )  <_  ( (
( A D P )  +  S )  /  2 ) } )
171169, 170syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  ( ( cls `  J ) `  { y  e.  X  |  ( A D y )  <_  (
( ( A D P )  +  S
)  /  2 ) } )  =  {
y  e.  X  | 
( A D y )  <_  ( (
( A D P )  +  S )  /  2 ) } )
172153, 171eleqtrd 2557 . . . . . . . . . . 11  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  P  e.  { y  e.  X  | 
( A D y )  <_  ( (
( A D P )  +  S )  /  2 ) } )
173 oveq2 6292 . . . . . . . . . . . . . 14  |-  ( y  =  P  ->  ( A D y )  =  ( A D P ) )
174173breq1d 4457 . . . . . . . . . . . . 13  |-  ( y  =  P  ->  (
( A D y )  <_  ( (
( A D P )  +  S )  /  2 )  <->  ( A D P )  <_  (
( ( A D P )  +  S
)  /  2 ) ) )
175174elrab 3261 . . . . . . . . . . . 12  |-  ( P  e.  { y  e.  X  |  ( A D y )  <_ 
( ( ( A D P )  +  S )  /  2
) }  <->  ( P  e.  X  /\  ( A D P )  <_ 
( ( ( A D P )  +  S )  /  2
) ) )
176175simprbi 464 . . . . . . . . . . 11  |-  ( P  e.  { y  e.  X  |  ( A D y )  <_ 
( ( ( A D P )  +  S )  /  2
) }  ->  ( A D P )  <_ 
( ( ( A D P )  +  S )  /  2
) )
177172, 176syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  ( A D P )  <_  (
( ( A D P )  +  S
)  /  2 ) )
17832, 34, 32leadd2d 10147 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( A D P )  <_  S  <->  ( ( A D P )  +  ( A D P ) )  <_  ( ( A D P )  +  S ) ) )
17932recnd 9622 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A D P )  e.  CC )
1801792timesd 10781 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 2  x.  ( A D P ) )  =  ( ( A D P )  +  ( A D P ) ) )
181180breq1d 4457 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 2  x.  ( A D P ) )  <_  (
( A D P )  +  S )  <-> 
( ( A D P )  +  ( A D P ) )  <_  ( ( A D P )  +  S ) ) )
182 lemuldiv2 10425 . . . . . . . . . . . . . 14  |-  ( ( ( A D P )  e.  RR  /\  ( ( A D P )  +  S
)  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( (
2  x.  ( A D P ) )  <_  ( ( A D P )  +  S )  <->  ( A D P )  <_  (
( ( A D P )  +  S
)  /  2 ) ) )
18379, 182mp3an3 1313 . . . . . . . . . . . . 13  |-  ( ( ( A D P )  e.  RR  /\  ( ( A D P )  +  S
)  e.  RR )  ->  ( ( 2  x.  ( A D P ) )  <_ 
( ( A D P )  +  S
)  <->  ( A D P )  <_  (
( ( A D P )  +  S
)  /  2 ) ) )
18432, 67, 183syl2anc 661 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 2  x.  ( A D P ) )  <_  (
( A D P )  +  S )  <-> 
( A D P )  <_  ( (
( A D P )  +  S )  /  2 ) ) )
185178, 181, 1843bitr2d 281 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A D P )  <_  S  <->  ( A D P )  <_  ( ( ( A D P )  +  S )  / 
2 ) ) )
186185biimpar 485 . . . . . . . . . 10  |-  ( (
ph  /\  ( A D P )  <_  (
( ( A D P )  +  S
)  /  2 ) )  ->  ( A D P )  <_  S
)
187177, 186syldan 470 . . . . . . . . 9  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  ( A D P )  <_  S
)
188187ex 434 . . . . . . . 8  |-  ( ph  ->  ( S  <  ( A D P )  -> 
( A D P )  <_  S )
)
18949, 188sylbird 235 . . . . . . 7  |-  ( ph  ->  ( -.  ( A D P )  <_  S  ->  ( A D P )  <_  S
) )
190189pm2.18d 111 . . . . . 6  |-  ( ph  ->  ( A D P )  <_  S )
191190adantr 465 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  ( A D P )  <_  S )
19286adantr 465 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  R  C_  RR )
19392adantr 465 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  E. x  e.  RR  A. w  e.  R  x  <_  w
)
194 simpr 461 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  Y )  ->  y  e.  Y )
195 fvex 5876 . . . . . . . . 9  |-  ( N `
 ( A  .-  y ) )  e. 
_V
196 eqid 2467 . . . . . . . . . 10  |-  ( y  e.  Y  |->  ( N `
 ( A  .-  y ) ) )  =  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )
197196elrnmpt1 5251 . . . . . . . . 9  |-  ( ( y  e.  Y  /\  ( N `  ( A 
.-  y ) )  e.  _V )  -> 
( N `  ( A  .-  y ) )  e.  ran  ( y  e.  Y  |->  ( N `
 ( A  .-  y ) ) ) )
198194, 195, 197sylancl 662 . . . . . . . 8  |-  ( (
ph  /\  y  e.  Y )  ->  ( N `  ( A  .-  y ) )  e. 
ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) ) )
199198, 10syl6eleqr 2566 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  ( N `  ( A  .-  y ) )  e.  R )
200 infmrlb 10524 . . . . . . 7  |-  ( ( R  C_  RR  /\  E. x  e.  RR  A. w  e.  R  x  <_  w  /\  ( N `  ( A  .-  y ) )  e.  R )  ->  sup ( R ,  RR ,  `'  <  )  <_  ( N `  ( A  .-  y ) ) )
201192, 193, 199, 200syl3anc 1228 . . . . . 6  |-  ( (
ph  /\  y  e.  Y )  ->  sup ( R ,  RR ,  `'  <  )  <_  ( N `  ( A  .-  y ) ) )
20211, 201syl5eqbr 4480 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  S  <_  ( N `  ( A  .-  y ) ) )
20333, 35, 48, 191, 202letrd 9738 . . . 4  |-  ( (
ph  /\  y  e.  Y )  ->  ( A D P )  <_ 
( N `  ( A  .-  y ) ) )
20427, 203eqbrtrrd 4469 . . 3  |-  ( (
ph  /\  y  e.  Y )  ->  ( N `  ( A  .-  P ) )  <_ 
( N `  ( A  .-  y ) ) )
205204ralrimiva 2878 . 2  |-  ( ph  ->  A. y  e.  Y  ( N `  ( A 
.-  P ) )  <_  ( N `  ( A  .-  y ) ) )
206 oveq2 6292 . . . . . 6  |-  ( x  =  P  ->  ( A  .-  x )  =  ( A  .-  P
) )
207206fveq2d 5870 . . . . 5  |-  ( x  =  P  ->  ( N `  ( A  .-  x ) )  =  ( N `  ( A  .-  P ) ) )
208207breq1d 4457 . . . 4  |-  ( x  =  P  ->  (
( N `  ( A  .-  x ) )  <_  ( N `  ( A  .-  y ) )  <->  ( N `  ( A  .-  P ) )  <_  ( N `  ( A  .-  y
) ) ) )
209208ralbidv 2903 . . 3  |-  ( x  =  P  ->  ( A. y  e.  Y  ( N `  ( A 
.-  x ) )  <_  ( N `  ( A  .-  y ) )  <->  A. y  e.  Y  ( N `  ( A 
.-  P ) )  <_  ( N `  ( A  .-  y ) ) ) )
210209rspcev 3214 . 2  |-  ( ( P  e.  Y  /\  A. y  e.  Y  ( N `  ( A 
.-  P ) )  <_  ( N `  ( A  .-  y ) ) )  ->  E. x  e.  Y  A. y  e.  Y  ( N `  ( A  .-  x
) )  <_  ( N `  ( A  .-  y ) ) )
21116, 205, 210syl2anc 661 1  |-  ( ph  ->  E. x  e.  Y  A. y  e.  Y  ( N `  ( A 
.-  x ) )  <_  ( N `  ( A  .-  y ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815   {crab 2818   _Vcvv 3113    i^i cin 3475    C_ wss 3476   (/)c0 3785   ~Pcpw 4010   U.cuni 4245   class class class wbr 4447    |-> cmpt 4505    X. cxp 4997   `'ccnv 4998   ran crn 5000    |` cres 5001   ` cfv 5588  (class class class)co 6284   supcsup 7900   RRcr 9491   0cc0 9492    + caddc 9495    x. cmul 9497   RR*cxr 9627    < clt 9628    <_ cle 9629    - cmin 9805    / cdiv 10206   2c2 10585   RR+crp 11220   ^cexp 12134   Basecbs 14490   ↾s cress 14491   distcds 14564   TopOpenctopn 14677   -gcsg 15730   LModclmod 17312   LSubSpclss 17378   *Metcxmt 18202   Metcme 18203   fBascfbas 18205   filGencfg 18206   MetOpencmopn 18207   Clsdccld 19311   clsccl 19313   Filcfil 20109    fLim cflim 20198   *MetSpcxme 20583   MetSpcmt 20584   normcnm 20860  NrmGrpcngp 20861   CPreHilccph 21376  CMetSpccms 21534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570  ax-addf 9571  ax-mulf 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-tpos 6955  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-map 7422  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fi 7871  df-sup 7901  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-4 10596  df-5 10597  df-6 10598  df-7 10599  df-8 10600  df-9 10601  df-10 10602  df-n0 10796  df-z 10865  df-dec 10977  df-uz 11083  df-q 11183  df-rp 11221  df-xneg 11318  df-xadd 11319  df-xmul 11320  df-ico 11535  df-icc 11536  df-fz 11673  df-seq 12076  df-exp 12135  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-struct 14492  df-ndx 14493  df-slot 14494  df-base 14495  df-sets 14496  df-ress 14497  df-plusg 14568  df-mulr 14569  df-starv 14570  df-sca 14571  df-vsca 14572  df-ip 14573  df-tset 14574  df-ple 14575  df-ds 14577  df-unif 14578  df-rest 14678  df-0g 14697  df-topgen 14699  df-mnd 15732  df-mhm 15786  df-grp 15867  df-minusg 15868  df-sbg 15869  df-mulg 15870  df-subg 16003  df-ghm 16070  df-cmn 16606  df-abl 16607  df-mgp 16944  df-ur 16956  df-rng 17002  df-cring 17003  df-oppr 17073  df-dvdsr 17091  df-unit 17092  df-invr 17122  df-dvr 17133  df-rnghom 17165  df-drng 17198  df-subrg 17227  df-staf 17294  df-srng 17295  df-lmod 17314  df-lss 17379  df-lmhm 17468  df-lvec 17549  df-sra 17618  df-rgmod 17619  df-psmet 18210  df-xmet 18211  df-met 18212  df-bl 18213  df-mopn 18214  df-fbas 18215  df-fg 18216  df-cnfld 18220  df-phl 18456  df-top 19194  df-bases 19196  df-topon 19197  df-topsp 19198  df-cld 19314  df-ntr 19315  df-cls 19316  df-nei 19393  df-haus 19610  df-fil 20110  df-flim 20203  df-xms 20586  df-ms 20587  df-nm 20866  df-ngp 20867  df-nlm 20870  df-clm 21326  df-cph 21378  df-cfil 21457  df-cmet 21459  df-cms 21537
This theorem is referenced by:  minveclem5  21611
  Copyright terms: Public domain W3C validator