MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhmpropd Structured version   Unicode version

Theorem mhmpropd 15780
Description: Monoid homomorphism depends only on the monoidal attributes of structures. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 7-Nov-2015.)
Hypotheses
Ref Expression
mhmpropd.a  |-  ( ph  ->  B  =  ( Base `  J ) )
mhmpropd.b  |-  ( ph  ->  C  =  ( Base `  K ) )
mhmpropd.c  |-  ( ph  ->  B  =  ( Base `  L ) )
mhmpropd.d  |-  ( ph  ->  C  =  ( Base `  M ) )
mhmpropd.e  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  J ) y )  =  ( x ( +g  `  L ) y ) )
mhmpropd.f  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  M ) y ) )
Assertion
Ref Expression
mhmpropd  |-  ( ph  ->  ( J MndHom  K )  =  ( L MndHom  M
) )
Distinct variable groups:    x, y, B    x, C, y    x, J, y    x, L, y    ph, x, y    x, K, y    x, M, y

Proof of Theorem mhmpropd
Dummy variables  w  z  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmpropd.e . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  J ) y )  =  ( x ( +g  `  L ) y ) )
21fveq2d 5868 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( f `  (
x ( +g  `  J
) y ) )  =  ( f `  ( x ( +g  `  L ) y ) ) )
32adantlr 714 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f : B --> C )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
f `  ( x
( +g  `  J ) y ) )  =  ( f `  (
x ( +g  `  L
) y ) ) )
4 ffvelrn 6017 . . . . . . . . . . . . . . . . 17  |-  ( ( f : B --> C  /\  x  e.  B )  ->  ( f `  x
)  e.  C )
5 ffvelrn 6017 . . . . . . . . . . . . . . . . 17  |-  ( ( f : B --> C  /\  y  e.  B )  ->  ( f `  y
)  e.  C )
64, 5anim12dan 835 . . . . . . . . . . . . . . . 16  |-  ( ( f : B --> C  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( f `  x
)  e.  C  /\  ( f `  y
)  e.  C ) )
7 mhmpropd.f . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  M ) y ) )
87ralrimivva 2885 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A. x  e.  C  A. y  e.  C  ( x ( +g  `  K ) y )  =  ( x ( +g  `  M ) y ) )
9 oveq1 6289 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  w  ->  (
x ( +g  `  K
) y )  =  ( w ( +g  `  K ) y ) )
10 oveq1 6289 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  w  ->  (
x ( +g  `  M
) y )  =  ( w ( +g  `  M ) y ) )
119, 10eqeq12d 2489 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  w  ->  (
( x ( +g  `  K ) y )  =  ( x ( +g  `  M ) y )  <->  ( w
( +g  `  K ) y )  =  ( w ( +g  `  M
) y ) ) )
12 oveq2 6290 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  z  ->  (
w ( +g  `  K
) y )  =  ( w ( +g  `  K ) z ) )
13 oveq2 6290 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  z  ->  (
w ( +g  `  M
) y )  =  ( w ( +g  `  M ) z ) )
1412, 13eqeq12d 2489 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  z  ->  (
( w ( +g  `  K ) y )  =  ( w ( +g  `  M ) y )  <->  ( w
( +g  `  K ) z )  =  ( w ( +g  `  M
) z ) ) )
1511, 14cbvral2v 3096 . . . . . . . . . . . . . . . . 17  |-  ( A. x  e.  C  A. y  e.  C  (
x ( +g  `  K
) y )  =  ( x ( +g  `  M ) y )  <->  A. w  e.  C  A. z  e.  C  ( w ( +g  `  K ) z )  =  ( w ( +g  `  M ) z ) )
168, 15sylib 196 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. w  e.  C  A. z  e.  C  ( w ( +g  `  K ) z )  =  ( w ( +g  `  M ) z ) )
17 oveq1 6289 . . . . . . . . . . . . . . . . . 18  |-  ( w  =  ( f `  x )  ->  (
w ( +g  `  K
) z )  =  ( ( f `  x ) ( +g  `  K ) z ) )
18 oveq1 6289 . . . . . . . . . . . . . . . . . 18  |-  ( w  =  ( f `  x )  ->  (
w ( +g  `  M
) z )  =  ( ( f `  x ) ( +g  `  M ) z ) )
1917, 18eqeq12d 2489 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( f `  x )  ->  (
( w ( +g  `  K ) z )  =  ( w ( +g  `  M ) z )  <->  ( (
f `  x )
( +g  `  K ) z )  =  ( ( f `  x
) ( +g  `  M
) z ) ) )
20 oveq2 6290 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( f `  y )  ->  (
( f `  x
) ( +g  `  K
) z )  =  ( ( f `  x ) ( +g  `  K ) ( f `
 y ) ) )
21 oveq2 6290 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( f `  y )  ->  (
( f `  x
) ( +g  `  M
) z )  =  ( ( f `  x ) ( +g  `  M ) ( f `
 y ) ) )
2220, 21eqeq12d 2489 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( f `  y )  ->  (
( ( f `  x ) ( +g  `  K ) z )  =  ( ( f `
 x ) ( +g  `  M ) z )  <->  ( (
f `  x )
( +g  `  K ) ( f `  y
) )  =  ( ( f `  x
) ( +g  `  M
) ( f `  y ) ) ) )
2319, 22rspc2va 3224 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f `  x )  e.  C  /\  ( f `  y
)  e.  C )  /\  A. w  e.  C  A. z  e.  C  ( w ( +g  `  K ) z )  =  ( w ( +g  `  M
) z ) )  ->  ( ( f `
 x ) ( +g  `  K ) ( f `  y
) )  =  ( ( f `  x
) ( +g  `  M
) ( f `  y ) ) )
246, 16, 23syl2anr 478 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( f : B --> C  /\  (
x  e.  B  /\  y  e.  B )
) )  ->  (
( f `  x
) ( +g  `  K
) ( f `  y ) )  =  ( ( f `  x ) ( +g  `  M ) ( f `
 y ) ) )
2524anassrs 648 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f : B --> C )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( f `  x
) ( +g  `  K
) ( f `  y ) )  =  ( ( f `  x ) ( +g  `  M ) ( f `
 y ) ) )
263, 25eqeq12d 2489 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f : B --> C )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( f `  (
x ( +g  `  J
) y ) )  =  ( ( f `
 x ) ( +g  `  K ) ( f `  y
) )  <->  ( f `  ( x ( +g  `  L ) y ) )  =  ( ( f `  x ) ( +g  `  M
) ( f `  y ) ) ) )
27262ralbidva 2906 . . . . . . . . . . . 12  |-  ( (
ph  /\  f : B
--> C )  ->  ( A. x  e.  B  A. y  e.  B  ( f `  (
x ( +g  `  J
) y ) )  =  ( ( f `
 x ) ( +g  `  K ) ( f `  y
) )  <->  A. x  e.  B  A. y  e.  B  ( f `  ( x ( +g  `  L ) y ) )  =  ( ( f `  x ) ( +g  `  M
) ( f `  y ) ) ) )
2827adantrl 715 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( J  e.  Mnd  /\  K  e.  Mnd )  /\  f : B --> C ) )  ->  ( A. x  e.  B  A. y  e.  B  ( f `  ( x ( +g  `  J ) y ) )  =  ( ( f `  x ) ( +g  `  K
) ( f `  y ) )  <->  A. x  e.  B  A. y  e.  B  ( f `  ( x ( +g  `  L ) y ) )  =  ( ( f `  x ) ( +g  `  M
) ( f `  y ) ) ) )
29 mhmpropd.a . . . . . . . . . . . . 13  |-  ( ph  ->  B  =  ( Base `  J ) )
30 raleq 3058 . . . . . . . . . . . . . 14  |-  ( B  =  ( Base `  J
)  ->  ( A. y  e.  B  (
f `  ( x
( +g  `  J ) y ) )  =  ( ( f `  x ) ( +g  `  K ) ( f `
 y ) )  <->  A. y  e.  ( Base `  J ) ( f `  ( x ( +g  `  J
) y ) )  =  ( ( f `
 x ) ( +g  `  K ) ( f `  y
) ) ) )
3130raleqbi1dv 3066 . . . . . . . . . . . . 13  |-  ( B  =  ( Base `  J
)  ->  ( A. x  e.  B  A. y  e.  B  (
f `  ( x
( +g  `  J ) y ) )  =  ( ( f `  x ) ( +g  `  K ) ( f `
 y ) )  <->  A. x  e.  ( Base `  J ) A. y  e.  ( Base `  J ) ( f `
 ( x ( +g  `  J ) y ) )  =  ( ( f `  x ) ( +g  `  K ) ( f `
 y ) ) ) )
3229, 31syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( A. x  e.  B  A. y  e.  B  ( f `  ( x ( +g  `  J ) y ) )  =  ( ( f `  x ) ( +g  `  K
) ( f `  y ) )  <->  A. x  e.  ( Base `  J
) A. y  e.  ( Base `  J
) ( f `  ( x ( +g  `  J ) y ) )  =  ( ( f `  x ) ( +g  `  K
) ( f `  y ) ) ) )
3332adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( J  e.  Mnd  /\  K  e.  Mnd )  /\  f : B --> C ) )  ->  ( A. x  e.  B  A. y  e.  B  ( f `  ( x ( +g  `  J ) y ) )  =  ( ( f `  x ) ( +g  `  K
) ( f `  y ) )  <->  A. x  e.  ( Base `  J
) A. y  e.  ( Base `  J
) ( f `  ( x ( +g  `  J ) y ) )  =  ( ( f `  x ) ( +g  `  K
) ( f `  y ) ) ) )
34 mhmpropd.c . . . . . . . . . . . . 13  |-  ( ph  ->  B  =  ( Base `  L ) )
35 raleq 3058 . . . . . . . . . . . . . 14  |-  ( B  =  ( Base `  L
)  ->  ( A. y  e.  B  (
f `  ( x
( +g  `  L ) y ) )  =  ( ( f `  x ) ( +g  `  M ) ( f `
 y ) )  <->  A. y  e.  ( Base `  L ) ( f `  ( x ( +g  `  L
) y ) )  =  ( ( f `
 x ) ( +g  `  M ) ( f `  y
) ) ) )
3635raleqbi1dv 3066 . . . . . . . . . . . . 13  |-  ( B  =  ( Base `  L
)  ->  ( A. x  e.  B  A. y  e.  B  (
f `  ( x
( +g  `  L ) y ) )  =  ( ( f `  x ) ( +g  `  M ) ( f `
 y ) )  <->  A. x  e.  ( Base `  L ) A. y  e.  ( Base `  L ) ( f `
 ( x ( +g  `  L ) y ) )  =  ( ( f `  x ) ( +g  `  M ) ( f `
 y ) ) ) )
3734, 36syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( A. x  e.  B  A. y  e.  B  ( f `  ( x ( +g  `  L ) y ) )  =  ( ( f `  x ) ( +g  `  M
) ( f `  y ) )  <->  A. x  e.  ( Base `  L
) A. y  e.  ( Base `  L
) ( f `  ( x ( +g  `  L ) y ) )  =  ( ( f `  x ) ( +g  `  M
) ( f `  y ) ) ) )
3837adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( J  e.  Mnd  /\  K  e.  Mnd )  /\  f : B --> C ) )  ->  ( A. x  e.  B  A. y  e.  B  ( f `  ( x ( +g  `  L ) y ) )  =  ( ( f `  x ) ( +g  `  M
) ( f `  y ) )  <->  A. x  e.  ( Base `  L
) A. y  e.  ( Base `  L
) ( f `  ( x ( +g  `  L ) y ) )  =  ( ( f `  x ) ( +g  `  M
) ( f `  y ) ) ) )
3928, 33, 383bitr3d 283 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( J  e.  Mnd  /\  K  e.  Mnd )  /\  f : B --> C ) )  ->  ( A. x  e.  ( Base `  J
) A. y  e.  ( Base `  J
) ( f `  ( x ( +g  `  J ) y ) )  =  ( ( f `  x ) ( +g  `  K
) ( f `  y ) )  <->  A. x  e.  ( Base `  L
) A. y  e.  ( Base `  L
) ( f `  ( x ( +g  `  L ) y ) )  =  ( ( f `  x ) ( +g  `  M
) ( f `  y ) ) ) )
4029adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( ( J  e.  Mnd  /\  K  e.  Mnd )  /\  f : B --> C ) )  ->  B  =  (
Base `  J )
)
4134adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( ( J  e.  Mnd  /\  K  e.  Mnd )  /\  f : B --> C ) )  ->  B  =  (
Base `  L )
)
421adantlr 714 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( J  e.  Mnd  /\  K  e.  Mnd )  /\  f : B --> C ) )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  J ) y )  =  ( x ( +g  `  L ) y ) )
4340, 41, 42grpidpropd 15757 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( J  e.  Mnd  /\  K  e.  Mnd )  /\  f : B --> C ) )  ->  ( 0g `  J )  =  ( 0g `  L ) )
4443fveq2d 5868 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( J  e.  Mnd  /\  K  e.  Mnd )  /\  f : B --> C ) )  ->  ( f `  ( 0g `  J ) )  =  ( f `
 ( 0g `  L ) ) )
45 mhmpropd.b . . . . . . . . . . . . 13  |-  ( ph  ->  C  =  ( Base `  K ) )
4645adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( J  e.  Mnd  /\  K  e.  Mnd )  /\  f : B --> C ) )  ->  C  =  (
Base `  K )
)
47 mhmpropd.d . . . . . . . . . . . . 13  |-  ( ph  ->  C  =  ( Base `  M ) )
4847adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( J  e.  Mnd  /\  K  e.  Mnd )  /\  f : B --> C ) )  ->  C  =  (
Base `  M )
)
497adantlr 714 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( J  e.  Mnd  /\  K  e.  Mnd )  /\  f : B --> C ) )  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  M ) y ) )
5046, 48, 49grpidpropd 15757 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( J  e.  Mnd  /\  K  e.  Mnd )  /\  f : B --> C ) )  ->  ( 0g `  K )  =  ( 0g `  M ) )
5144, 50eqeq12d 2489 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( J  e.  Mnd  /\  K  e.  Mnd )  /\  f : B --> C ) )  ->  ( ( f `
 ( 0g `  J ) )  =  ( 0g `  K
)  <->  ( f `  ( 0g `  L ) )  =  ( 0g
`  M ) ) )
5239, 51anbi12d 710 . . . . . . . . 9  |-  ( (
ph  /\  ( ( J  e.  Mnd  /\  K  e.  Mnd )  /\  f : B --> C ) )  ->  ( ( A. x  e.  ( Base `  J ) A. y  e.  ( Base `  J
) ( f `  ( x ( +g  `  J ) y ) )  =  ( ( f `  x ) ( +g  `  K
) ( f `  y ) )  /\  ( f `  ( 0g `  J ) )  =  ( 0g `  K ) )  <->  ( A. x  e.  ( Base `  L ) A. y  e.  ( Base `  L
) ( f `  ( x ( +g  `  L ) y ) )  =  ( ( f `  x ) ( +g  `  M
) ( f `  y ) )  /\  ( f `  ( 0g `  L ) )  =  ( 0g `  M ) ) ) )
5352anassrs 648 . . . . . . . 8  |-  ( ( ( ph  /\  ( J  e.  Mnd  /\  K  e.  Mnd ) )  /\  f : B --> C )  ->  ( ( A. x  e.  ( Base `  J ) A. y  e.  ( Base `  J
) ( f `  ( x ( +g  `  J ) y ) )  =  ( ( f `  x ) ( +g  `  K
) ( f `  y ) )  /\  ( f `  ( 0g `  J ) )  =  ( 0g `  K ) )  <->  ( A. x  e.  ( Base `  L ) A. y  e.  ( Base `  L
) ( f `  ( x ( +g  `  L ) y ) )  =  ( ( f `  x ) ( +g  `  M
) ( f `  y ) )  /\  ( f `  ( 0g `  L ) )  =  ( 0g `  M ) ) ) )
5453pm5.32da 641 . . . . . . 7  |-  ( (
ph  /\  ( J  e.  Mnd  /\  K  e. 
Mnd ) )  -> 
( ( f : B --> C  /\  ( A. x  e.  ( Base `  J ) A. y  e.  ( Base `  J ) ( f `
 ( x ( +g  `  J ) y ) )  =  ( ( f `  x ) ( +g  `  K ) ( f `
 y ) )  /\  ( f `  ( 0g `  J ) )  =  ( 0g
`  K ) ) )  <->  ( f : B --> C  /\  ( A. x  e.  ( Base `  L ) A. y  e.  ( Base `  L ) ( f `
 ( x ( +g  `  L ) y ) )  =  ( ( f `  x ) ( +g  `  M ) ( f `
 y ) )  /\  ( f `  ( 0g `  L ) )  =  ( 0g
`  M ) ) ) ) )
5529, 45feq23d 5724 . . . . . . . . 9  |-  ( ph  ->  ( f : B --> C 
<->  f : ( Base `  J ) --> ( Base `  K ) ) )
5655adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( J  e.  Mnd  /\  K  e. 
Mnd ) )  -> 
( f : B --> C 
<->  f : ( Base `  J ) --> ( Base `  K ) ) )
5756anbi1d 704 . . . . . . 7  |-  ( (
ph  /\  ( J  e.  Mnd  /\  K  e. 
Mnd ) )  -> 
( ( f : B --> C  /\  ( A. x  e.  ( Base `  J ) A. y  e.  ( Base `  J ) ( f `
 ( x ( +g  `  J ) y ) )  =  ( ( f `  x ) ( +g  `  K ) ( f `
 y ) )  /\  ( f `  ( 0g `  J ) )  =  ( 0g
`  K ) ) )  <->  ( f : ( Base `  J
) --> ( Base `  K
)  /\  ( A. x  e.  ( Base `  J ) A. y  e.  ( Base `  J
) ( f `  ( x ( +g  `  J ) y ) )  =  ( ( f `  x ) ( +g  `  K
) ( f `  y ) )  /\  ( f `  ( 0g `  J ) )  =  ( 0g `  K ) ) ) ) )
5834, 47feq23d 5724 . . . . . . . . 9  |-  ( ph  ->  ( f : B --> C 
<->  f : ( Base `  L ) --> ( Base `  M ) ) )
5958adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( J  e.  Mnd  /\  K  e. 
Mnd ) )  -> 
( f : B --> C 
<->  f : ( Base `  L ) --> ( Base `  M ) ) )
6059anbi1d 704 . . . . . . 7  |-  ( (
ph  /\  ( J  e.  Mnd  /\  K  e. 
Mnd ) )  -> 
( ( f : B --> C  /\  ( A. x  e.  ( Base `  L ) A. y  e.  ( Base `  L ) ( f `
 ( x ( +g  `  L ) y ) )  =  ( ( f `  x ) ( +g  `  M ) ( f `
 y ) )  /\  ( f `  ( 0g `  L ) )  =  ( 0g
`  M ) ) )  <->  ( f : ( Base `  L
) --> ( Base `  M
)  /\  ( A. x  e.  ( Base `  L ) A. y  e.  ( Base `  L
) ( f `  ( x ( +g  `  L ) y ) )  =  ( ( f `  x ) ( +g  `  M
) ( f `  y ) )  /\  ( f `  ( 0g `  L ) )  =  ( 0g `  M ) ) ) ) )
6154, 57, 603bitr3d 283 . . . . . 6  |-  ( (
ph  /\  ( J  e.  Mnd  /\  K  e. 
Mnd ) )  -> 
( ( f : ( Base `  J
) --> ( Base `  K
)  /\  ( A. x  e.  ( Base `  J ) A. y  e.  ( Base `  J
) ( f `  ( x ( +g  `  J ) y ) )  =  ( ( f `  x ) ( +g  `  K
) ( f `  y ) )  /\  ( f `  ( 0g `  J ) )  =  ( 0g `  K ) ) )  <-> 
( f : (
Base `  L ) --> ( Base `  M )  /\  ( A. x  e.  ( Base `  L
) A. y  e.  ( Base `  L
) ( f `  ( x ( +g  `  L ) y ) )  =  ( ( f `  x ) ( +g  `  M
) ( f `  y ) )  /\  ( f `  ( 0g `  L ) )  =  ( 0g `  M ) ) ) ) )
62 3anass 977 . . . . . 6  |-  ( ( f : ( Base `  J ) --> ( Base `  K )  /\  A. x  e.  ( Base `  J ) A. y  e.  ( Base `  J
) ( f `  ( x ( +g  `  J ) y ) )  =  ( ( f `  x ) ( +g  `  K
) ( f `  y ) )  /\  ( f `  ( 0g `  J ) )  =  ( 0g `  K ) )  <->  ( f : ( Base `  J
) --> ( Base `  K
)  /\  ( A. x  e.  ( Base `  J ) A. y  e.  ( Base `  J
) ( f `  ( x ( +g  `  J ) y ) )  =  ( ( f `  x ) ( +g  `  K
) ( f `  y ) )  /\  ( f `  ( 0g `  J ) )  =  ( 0g `  K ) ) ) )
63 3anass 977 . . . . . 6  |-  ( ( f : ( Base `  L ) --> ( Base `  M )  /\  A. x  e.  ( Base `  L ) A. y  e.  ( Base `  L
) ( f `  ( x ( +g  `  L ) y ) )  =  ( ( f `  x ) ( +g  `  M
) ( f `  y ) )  /\  ( f `  ( 0g `  L ) )  =  ( 0g `  M ) )  <->  ( f : ( Base `  L
) --> ( Base `  M
)  /\  ( A. x  e.  ( Base `  L ) A. y  e.  ( Base `  L
) ( f `  ( x ( +g  `  L ) y ) )  =  ( ( f `  x ) ( +g  `  M
) ( f `  y ) )  /\  ( f `  ( 0g `  L ) )  =  ( 0g `  M ) ) ) )
6461, 62, 633bitr4g 288 . . . . 5  |-  ( (
ph  /\  ( J  e.  Mnd  /\  K  e. 
Mnd ) )  -> 
( ( f : ( Base `  J
) --> ( Base `  K
)  /\  A. x  e.  ( Base `  J
) A. y  e.  ( Base `  J
) ( f `  ( x ( +g  `  J ) y ) )  =  ( ( f `  x ) ( +g  `  K
) ( f `  y ) )  /\  ( f `  ( 0g `  J ) )  =  ( 0g `  K ) )  <->  ( f : ( Base `  L
) --> ( Base `  M
)  /\  A. x  e.  ( Base `  L
) A. y  e.  ( Base `  L
) ( f `  ( x ( +g  `  L ) y ) )  =  ( ( f `  x ) ( +g  `  M
) ( f `  y ) )  /\  ( f `  ( 0g `  L ) )  =  ( 0g `  M ) ) ) )
6564pm5.32da 641 . . . 4  |-  ( ph  ->  ( ( ( J  e.  Mnd  /\  K  e.  Mnd )  /\  (
f : ( Base `  J ) --> ( Base `  K )  /\  A. x  e.  ( Base `  J ) A. y  e.  ( Base `  J
) ( f `  ( x ( +g  `  J ) y ) )  =  ( ( f `  x ) ( +g  `  K
) ( f `  y ) )  /\  ( f `  ( 0g `  J ) )  =  ( 0g `  K ) ) )  <-> 
( ( J  e. 
Mnd  /\  K  e.  Mnd )  /\  (
f : ( Base `  L ) --> ( Base `  M )  /\  A. x  e.  ( Base `  L ) A. y  e.  ( Base `  L
) ( f `  ( x ( +g  `  L ) y ) )  =  ( ( f `  x ) ( +g  `  M
) ( f `  y ) )  /\  ( f `  ( 0g `  L ) )  =  ( 0g `  M ) ) ) ) )
6629, 34, 1mndpropd 15756 . . . . . 6  |-  ( ph  ->  ( J  e.  Mnd  <->  L  e.  Mnd ) )
6745, 47, 7mndpropd 15756 . . . . . 6  |-  ( ph  ->  ( K  e.  Mnd  <->  M  e.  Mnd ) )
6866, 67anbi12d 710 . . . . 5  |-  ( ph  ->  ( ( J  e. 
Mnd  /\  K  e.  Mnd )  <->  ( L  e. 
Mnd  /\  M  e.  Mnd ) ) )
6968anbi1d 704 . . . 4  |-  ( ph  ->  ( ( ( J  e.  Mnd  /\  K  e.  Mnd )  /\  (
f : ( Base `  L ) --> ( Base `  M )  /\  A. x  e.  ( Base `  L ) A. y  e.  ( Base `  L
) ( f `  ( x ( +g  `  L ) y ) )  =  ( ( f `  x ) ( +g  `  M
) ( f `  y ) )  /\  ( f `  ( 0g `  L ) )  =  ( 0g `  M ) ) )  <-> 
( ( L  e. 
Mnd  /\  M  e.  Mnd )  /\  (
f : ( Base `  L ) --> ( Base `  M )  /\  A. x  e.  ( Base `  L ) A. y  e.  ( Base `  L
) ( f `  ( x ( +g  `  L ) y ) )  =  ( ( f `  x ) ( +g  `  M
) ( f `  y ) )  /\  ( f `  ( 0g `  L ) )  =  ( 0g `  M ) ) ) ) )
7065, 69bitrd 253 . . 3  |-  ( ph  ->  ( ( ( J  e.  Mnd  /\  K  e.  Mnd )  /\  (
f : ( Base `  J ) --> ( Base `  K )  /\  A. x  e.  ( Base `  J ) A. y  e.  ( Base `  J
) ( f `  ( x ( +g  `  J ) y ) )  =  ( ( f `  x ) ( +g  `  K
) ( f `  y ) )  /\  ( f `  ( 0g `  J ) )  =  ( 0g `  K ) ) )  <-> 
( ( L  e. 
Mnd  /\  M  e.  Mnd )  /\  (
f : ( Base `  L ) --> ( Base `  M )  /\  A. x  e.  ( Base `  L ) A. y  e.  ( Base `  L
) ( f `  ( x ( +g  `  L ) y ) )  =  ( ( f `  x ) ( +g  `  M
) ( f `  y ) )  /\  ( f `  ( 0g `  L ) )  =  ( 0g `  M ) ) ) ) )
71 eqid 2467 . . . 4  |-  ( Base `  J )  =  (
Base `  J )
72 eqid 2467 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
73 eqid 2467 . . . 4  |-  ( +g  `  J )  =  ( +g  `  J )
74 eqid 2467 . . . 4  |-  ( +g  `  K )  =  ( +g  `  K )
75 eqid 2467 . . . 4  |-  ( 0g
`  J )  =  ( 0g `  J
)
76 eqid 2467 . . . 4  |-  ( 0g
`  K )  =  ( 0g `  K
)
7771, 72, 73, 74, 75, 76ismhm 15776 . . 3  |-  ( f  e.  ( J MndHom  K
)  <->  ( ( J  e.  Mnd  /\  K  e.  Mnd )  /\  (
f : ( Base `  J ) --> ( Base `  K )  /\  A. x  e.  ( Base `  J ) A. y  e.  ( Base `  J
) ( f `  ( x ( +g  `  J ) y ) )  =  ( ( f `  x ) ( +g  `  K
) ( f `  y ) )  /\  ( f `  ( 0g `  J ) )  =  ( 0g `  K ) ) ) )
78 eqid 2467 . . . 4  |-  ( Base `  L )  =  (
Base `  L )
79 eqid 2467 . . . 4  |-  ( Base `  M )  =  (
Base `  M )
80 eqid 2467 . . . 4  |-  ( +g  `  L )  =  ( +g  `  L )
81 eqid 2467 . . . 4  |-  ( +g  `  M )  =  ( +g  `  M )
82 eqid 2467 . . . 4  |-  ( 0g
`  L )  =  ( 0g `  L
)
83 eqid 2467 . . . 4  |-  ( 0g
`  M )  =  ( 0g `  M
)
8478, 79, 80, 81, 82, 83ismhm 15776 . . 3  |-  ( f  e.  ( L MndHom  M
)  <->  ( ( L  e.  Mnd  /\  M  e.  Mnd )  /\  (
f : ( Base `  L ) --> ( Base `  M )  /\  A. x  e.  ( Base `  L ) A. y  e.  ( Base `  L
) ( f `  ( x ( +g  `  L ) y ) )  =  ( ( f `  x ) ( +g  `  M
) ( f `  y ) )  /\  ( f `  ( 0g `  L ) )  =  ( 0g `  M ) ) ) )
8570, 77, 843bitr4g 288 . 2  |-  ( ph  ->  ( f  e.  ( J MndHom  K )  <->  f  e.  ( L MndHom  M ) ) )
8685eqrdv 2464 1  |-  ( ph  ->  ( J MndHom  K )  =  ( L MndHom  M
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   -->wf 5582   ` cfv 5586  (class class class)co 6282   Basecbs 14483   +g cplusg 14548   0gc0g 14688   Mndcmnd 15719   MndHom cmhm 15772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-map 7419  df-0g 14690  df-mnd 15725  df-mhm 15774
This theorem is referenced by:  ghmpropd  16096  pwsco1rhm  17167  pwsco2rhm  17168  pwsdiagrhm  17242  rhmpropd  17244
  Copyright terms: Public domain W3C validator