MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhmmulg Structured version   Visualization version   Unicode version

Theorem mhmmulg 16868
Description: A homomorphism of monoids preserves group multiples. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
mhmmulg.b  |-  B  =  ( Base `  G
)
mhmmulg.s  |-  .x.  =  (.g
`  G )
mhmmulg.t  |-  .X.  =  (.g
`  H )
Assertion
Ref Expression
mhmmulg  |-  ( ( F  e.  ( G MndHom  H )  /\  N  e.  NN0  /\  X  e.  B )  ->  ( F `  ( N  .x.  X ) )  =  ( N  .X.  ( F `  X )
) )

Proof of Theorem mhmmulg
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6315 . . . . . . 7  |-  ( n  =  0  ->  (
n  .x.  X )  =  ( 0  .x. 
X ) )
21fveq2d 5883 . . . . . 6  |-  ( n  =  0  ->  ( F `  ( n  .x.  X ) )  =  ( F `  (
0  .x.  X )
) )
3 oveq1 6315 . . . . . 6  |-  ( n  =  0  ->  (
n  .X.  ( F `  X ) )  =  ( 0  .X.  ( F `  X )
) )
42, 3eqeq12d 2486 . . . . 5  |-  ( n  =  0  ->  (
( F `  (
n  .x.  X )
)  =  ( n 
.X.  ( F `  X ) )  <->  ( F `  ( 0  .x.  X
) )  =  ( 0  .X.  ( F `  X ) ) ) )
54imbi2d 323 . . . 4  |-  ( n  =  0  ->  (
( ( F  e.  ( G MndHom  H )  /\  X  e.  B
)  ->  ( F `  ( n  .x.  X
) )  =  ( n  .X.  ( F `  X ) ) )  <-> 
( ( F  e.  ( G MndHom  H )  /\  X  e.  B
)  ->  ( F `  ( 0  .x.  X
) )  =  ( 0  .X.  ( F `  X ) ) ) ) )
6 oveq1 6315 . . . . . . 7  |-  ( n  =  m  ->  (
n  .x.  X )  =  ( m  .x.  X ) )
76fveq2d 5883 . . . . . 6  |-  ( n  =  m  ->  ( F `  ( n  .x.  X ) )  =  ( F `  (
m  .x.  X )
) )
8 oveq1 6315 . . . . . 6  |-  ( n  =  m  ->  (
n  .X.  ( F `  X ) )  =  ( m  .X.  ( F `  X )
) )
97, 8eqeq12d 2486 . . . . 5  |-  ( n  =  m  ->  (
( F `  (
n  .x.  X )
)  =  ( n 
.X.  ( F `  X ) )  <->  ( F `  ( m  .x.  X
) )  =  ( m  .X.  ( F `  X ) ) ) )
109imbi2d 323 . . . 4  |-  ( n  =  m  ->  (
( ( F  e.  ( G MndHom  H )  /\  X  e.  B
)  ->  ( F `  ( n  .x.  X
) )  =  ( n  .X.  ( F `  X ) ) )  <-> 
( ( F  e.  ( G MndHom  H )  /\  X  e.  B
)  ->  ( F `  ( m  .x.  X
) )  =  ( m  .X.  ( F `  X ) ) ) ) )
11 oveq1 6315 . . . . . . 7  |-  ( n  =  ( m  + 
1 )  ->  (
n  .x.  X )  =  ( ( m  +  1 )  .x.  X ) )
1211fveq2d 5883 . . . . . 6  |-  ( n  =  ( m  + 
1 )  ->  ( F `  ( n  .x.  X ) )  =  ( F `  (
( m  +  1 )  .x.  X ) ) )
13 oveq1 6315 . . . . . 6  |-  ( n  =  ( m  + 
1 )  ->  (
n  .X.  ( F `  X ) )  =  ( ( m  + 
1 )  .X.  ( F `  X )
) )
1412, 13eqeq12d 2486 . . . . 5  |-  ( n  =  ( m  + 
1 )  ->  (
( F `  (
n  .x.  X )
)  =  ( n 
.X.  ( F `  X ) )  <->  ( F `  ( ( m  + 
1 )  .x.  X
) )  =  ( ( m  +  1 )  .X.  ( F `  X ) ) ) )
1514imbi2d 323 . . . 4  |-  ( n  =  ( m  + 
1 )  ->  (
( ( F  e.  ( G MndHom  H )  /\  X  e.  B
)  ->  ( F `  ( n  .x.  X
) )  =  ( n  .X.  ( F `  X ) ) )  <-> 
( ( F  e.  ( G MndHom  H )  /\  X  e.  B
)  ->  ( F `  ( ( m  + 
1 )  .x.  X
) )  =  ( ( m  +  1 )  .X.  ( F `  X ) ) ) ) )
16 oveq1 6315 . . . . . . 7  |-  ( n  =  N  ->  (
n  .x.  X )  =  ( N  .x.  X ) )
1716fveq2d 5883 . . . . . 6  |-  ( n  =  N  ->  ( F `  ( n  .x.  X ) )  =  ( F `  ( N  .x.  X ) ) )
18 oveq1 6315 . . . . . 6  |-  ( n  =  N  ->  (
n  .X.  ( F `  X ) )  =  ( N  .X.  ( F `  X )
) )
1917, 18eqeq12d 2486 . . . . 5  |-  ( n  =  N  ->  (
( F `  (
n  .x.  X )
)  =  ( n 
.X.  ( F `  X ) )  <->  ( F `  ( N  .x.  X
) )  =  ( N  .X.  ( F `  X ) ) ) )
2019imbi2d 323 . . . 4  |-  ( n  =  N  ->  (
( ( F  e.  ( G MndHom  H )  /\  X  e.  B
)  ->  ( F `  ( n  .x.  X
) )  =  ( n  .X.  ( F `  X ) ) )  <-> 
( ( F  e.  ( G MndHom  H )  /\  X  e.  B
)  ->  ( F `  ( N  .x.  X
) )  =  ( N  .X.  ( F `  X ) ) ) ) )
21 eqid 2471 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
22 eqid 2471 . . . . . . 7  |-  ( 0g
`  H )  =  ( 0g `  H
)
2321, 22mhm0 16668 . . . . . 6  |-  ( F  e.  ( G MndHom  H
)  ->  ( F `  ( 0g `  G
) )  =  ( 0g `  H ) )
2423adantr 472 . . . . 5  |-  ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  ->  ( F `  ( 0g `  G ) )  =  ( 0g `  H
) )
25 mhmmulg.b . . . . . . . 8  |-  B  =  ( Base `  G
)
26 mhmmulg.s . . . . . . . 8  |-  .x.  =  (.g
`  G )
2725, 21, 26mulg0 16841 . . . . . . 7  |-  ( X  e.  B  ->  (
0  .x.  X )  =  ( 0g `  G ) )
2827adantl 473 . . . . . 6  |-  ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  ->  (
0  .x.  X )  =  ( 0g `  G ) )
2928fveq2d 5883 . . . . 5  |-  ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  ->  ( F `  ( 0  .x.  X ) )  =  ( F `  ( 0g `  G ) ) )
30 eqid 2471 . . . . . . . 8  |-  ( Base `  H )  =  (
Base `  H )
3125, 30mhmf 16665 . . . . . . 7  |-  ( F  e.  ( G MndHom  H
)  ->  F : B
--> ( Base `  H
) )
3231ffvelrnda 6037 . . . . . 6  |-  ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  ->  ( F `  X )  e.  ( Base `  H
) )
33 mhmmulg.t . . . . . . 7  |-  .X.  =  (.g
`  H )
3430, 22, 33mulg0 16841 . . . . . 6  |-  ( ( F `  X )  e.  ( Base `  H
)  ->  ( 0 
.X.  ( F `  X ) )  =  ( 0g `  H
) )
3532, 34syl 17 . . . . 5  |-  ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  ->  (
0  .X.  ( F `  X ) )  =  ( 0g `  H
) )
3624, 29, 353eqtr4d 2515 . . . 4  |-  ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  ->  ( F `  ( 0  .x.  X ) )  =  ( 0  .X.  ( F `  X )
) )
37 oveq1 6315 . . . . . . 7  |-  ( ( F `  ( m 
.x.  X ) )  =  ( m  .X.  ( F `  X ) )  ->  ( ( F `  ( m  .x.  X ) ) ( +g  `  H ) ( F `  X
) )  =  ( ( m  .X.  ( F `  X )
) ( +g  `  H
) ( F `  X ) ) )
38 mhmrcl1 16663 . . . . . . . . . . . 12  |-  ( F  e.  ( G MndHom  H
)  ->  G  e.  Mnd )
3938ad2antrr 740 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  G  e.  Mnd )
40 simpr 468 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  m  e.  NN0 )
41 simplr 770 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  X  e.  B
)
42 eqid 2471 . . . . . . . . . . . 12  |-  ( +g  `  G )  =  ( +g  `  G )
4325, 26, 42mulgnn0p1 16847 . . . . . . . . . . 11  |-  ( ( G  e.  Mnd  /\  m  e.  NN0  /\  X  e.  B )  ->  (
( m  +  1 )  .x.  X )  =  ( ( m 
.x.  X ) ( +g  `  G ) X ) )
4439, 40, 41, 43syl3anc 1292 . . . . . . . . . 10  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  ( ( m  +  1 )  .x.  X )  =  ( ( m  .x.  X
) ( +g  `  G
) X ) )
4544fveq2d 5883 . . . . . . . . 9  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  ( F `  ( ( m  + 
1 )  .x.  X
) )  =  ( F `  ( ( m  .x.  X ) ( +g  `  G
) X ) ) )
46 simpll 768 . . . . . . . . . 10  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  F  e.  ( G MndHom  H ) )
4738ad2antrr 740 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( G MndHom  H )  /\  m  e.  NN0 )  /\  X  e.  B )  ->  G  e.  Mnd )
48 simplr 770 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( G MndHom  H )  /\  m  e.  NN0 )  /\  X  e.  B )  ->  m  e.  NN0 )
49 simpr 468 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( G MndHom  H )  /\  m  e.  NN0 )  /\  X  e.  B )  ->  X  e.  B )
5025, 26mulgnn0cl 16852 . . . . . . . . . . . 12  |-  ( ( G  e.  Mnd  /\  m  e.  NN0  /\  X  e.  B )  ->  (
m  .x.  X )  e.  B )
5147, 48, 49, 50syl3anc 1292 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( G MndHom  H )  /\  m  e.  NN0 )  /\  X  e.  B )  ->  ( m  .x.  X
)  e.  B )
5251an32s 821 . . . . . . . . . 10  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  ( m  .x.  X )  e.  B
)
53 eqid 2471 . . . . . . . . . . 11  |-  ( +g  `  H )  =  ( +g  `  H )
5425, 42, 53mhmlin 16667 . . . . . . . . . 10  |-  ( ( F  e.  ( G MndHom  H )  /\  (
m  .x.  X )  e.  B  /\  X  e.  B )  ->  ( F `  ( (
m  .x.  X )
( +g  `  G ) X ) )  =  ( ( F `  ( m  .x.  X ) ) ( +g  `  H
) ( F `  X ) ) )
5546, 52, 41, 54syl3anc 1292 . . . . . . . . 9  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  ( F `  ( ( m  .x.  X ) ( +g  `  G ) X ) )  =  ( ( F `  ( m 
.x.  X ) ) ( +g  `  H
) ( F `  X ) ) )
5645, 55eqtrd 2505 . . . . . . . 8  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  ( F `  ( ( m  + 
1 )  .x.  X
) )  =  ( ( F `  (
m  .x.  X )
) ( +g  `  H
) ( F `  X ) ) )
57 mhmrcl2 16664 . . . . . . . . . 10  |-  ( F  e.  ( G MndHom  H
)  ->  H  e.  Mnd )
5857ad2antrr 740 . . . . . . . . 9  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  H  e.  Mnd )
5932adantr 472 . . . . . . . . 9  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  ( F `  X )  e.  (
Base `  H )
)
6030, 33, 53mulgnn0p1 16847 . . . . . . . . 9  |-  ( ( H  e.  Mnd  /\  m  e.  NN0  /\  ( F `  X )  e.  ( Base `  H
) )  ->  (
( m  +  1 )  .X.  ( F `  X ) )  =  ( ( m  .X.  ( F `  X ) ) ( +g  `  H
) ( F `  X ) ) )
6158, 40, 59, 60syl3anc 1292 . . . . . . . 8  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  ( ( m  +  1 )  .X.  ( F `  X ) )  =  ( ( m  .X.  ( F `  X ) ) ( +g  `  H ) ( F `  X
) ) )
6256, 61eqeq12d 2486 . . . . . . 7  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  ( ( F `
 ( ( m  +  1 )  .x.  X ) )  =  ( ( m  + 
1 )  .X.  ( F `  X )
)  <->  ( ( F `
 ( m  .x.  X ) ) ( +g  `  H ) ( F `  X
) )  =  ( ( m  .X.  ( F `  X )
) ( +g  `  H
) ( F `  X ) ) ) )
6337, 62syl5ibr 229 . . . . . 6  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  ( ( F `
 ( m  .x.  X ) )  =  ( m  .X.  ( F `  X )
)  ->  ( F `  ( ( m  + 
1 )  .x.  X
) )  =  ( ( m  +  1 )  .X.  ( F `  X ) ) ) )
6463expcom 442 . . . . 5  |-  ( m  e.  NN0  ->  ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  ->  (
( F `  (
m  .x.  X )
)  =  ( m 
.X.  ( F `  X ) )  -> 
( F `  (
( m  +  1 )  .x.  X ) )  =  ( ( m  +  1 ) 
.X.  ( F `  X ) ) ) ) )
6564a2d 28 . . . 4  |-  ( m  e.  NN0  ->  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  ->  ( F `  (
m  .x.  X )
)  =  ( m 
.X.  ( F `  X ) ) )  ->  ( ( F  e.  ( G MndHom  H
)  /\  X  e.  B )  ->  ( F `  ( (
m  +  1 ) 
.x.  X ) )  =  ( ( m  +  1 )  .X.  ( F `  X ) ) ) ) )
665, 10, 15, 20, 36, 65nn0ind 11053 . . 3  |-  ( N  e.  NN0  ->  ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  ->  ( F `  ( N  .x.  X ) )  =  ( N  .X.  ( F `  X )
) ) )
67663impib 1229 . 2  |-  ( ( N  e.  NN0  /\  F  e.  ( G MndHom  H )  /\  X  e.  B )  ->  ( F `  ( N  .x.  X ) )  =  ( N  .X.  ( F `  X )
) )
68673com12 1235 1  |-  ( ( F  e.  ( G MndHom  H )  /\  N  e.  NN0  /\  X  e.  B )  ->  ( F `  ( N  .x.  X ) )  =  ( N  .X.  ( F `  X )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904   ` cfv 5589  (class class class)co 6308   0cc0 9557   1c1 9558    + caddc 9560   NN0cn0 10893   Basecbs 15199   +g cplusg 15268   0gc0g 15416   Mndcmnd 16613   MndHom cmhm 16658  .gcmg 16750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-er 7381  df-map 7492  df-en 7588  df-dom 7589  df-sdom 7590  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-n0 10894  df-z 10962  df-uz 11183  df-fz 11811  df-seq 12252  df-0g 15418  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-mhm 16660  df-mulg 16754
This theorem is referenced by:  pwsmulg  16878  ghmmulg  16973  evls1varpw  18992  evl1expd  19010  cayhamlem4  19989  dchrfi  24262  lgsqrlem1  24348  lgseisenlem4  24359  dchrisum0flblem1  24425
  Copyright terms: Public domain W3C validator