MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgpval Structured version   Unicode version

Theorem mgpval 16597
Description: Value of the multiplication group operation. (Contributed by Mario Carneiro, 21-Dec-2014.)
Hypotheses
Ref Expression
mgpval.1  |-  M  =  (mulGrp `  R )
mgpval.2  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
mgpval  |-  M  =  ( R sSet  <. ( +g  `  ndx ) , 
.x.  >. )

Proof of Theorem mgpval
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 mgpval.1 . 2  |-  M  =  (mulGrp `  R )
2 id 22 . . . . 5  |-  ( r  =  R  ->  r  =  R )
3 fveq2 5694 . . . . . . 7  |-  ( r  =  R  ->  ( .r `  r )  =  ( .r `  R
) )
4 mgpval.2 . . . . . . 7  |-  .x.  =  ( .r `  R )
53, 4syl6eqr 2493 . . . . . 6  |-  ( r  =  R  ->  ( .r `  r )  = 
.x.  )
65opeq2d 4069 . . . . 5  |-  ( r  =  R  ->  <. ( +g  `  ndx ) ,  ( .r `  r
) >.  =  <. ( +g  `  ndx ) , 
.x.  >. )
72, 6oveq12d 6112 . . . 4  |-  ( r  =  R  ->  (
r sSet  <. ( +g  `  ndx ) ,  ( .r `  r ) >. )  =  ( R sSet  <. ( +g  `  ndx ) ,  .x.  >. ) )
8 df-mgp 16595 . . . 4  |- mulGrp  =  ( r  e.  _V  |->  ( r sSet  <. ( +g  `  ndx ) ,  ( .r `  r ) >. )
)
9 ovex 6119 . . . 4  |-  ( R sSet  <. ( +g  `  ndx ) ,  .x.  >. )  e.  _V
107, 8, 9fvmpt 5777 . . 3  |-  ( R  e.  _V  ->  (mulGrp `  R )  =  ( R sSet  <. ( +g  `  ndx ) ,  .x.  >. )
)
11 fvprc 5688 . . . 4  |-  ( -.  R  e.  _V  ->  (mulGrp `  R )  =  (/) )
12 reldmsets 14199 . . . . 5  |-  Rel  dom sSet
1312ovprc1 6122 . . . 4  |-  ( -.  R  e.  _V  ->  ( R sSet  <. ( +g  `  ndx ) ,  .x.  >. )  =  (/) )
1411, 13eqtr4d 2478 . . 3  |-  ( -.  R  e.  _V  ->  (mulGrp `  R )  =  ( R sSet  <. ( +g  `  ndx ) ,  .x.  >. )
)
1510, 14pm2.61i 164 . 2  |-  (mulGrp `  R )  =  ( R sSet  <. ( +g  `  ndx ) ,  .x.  >. )
161, 15eqtri 2463 1  |-  M  =  ( R sSet  <. ( +g  `  ndx ) , 
.x.  >. )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1369    e. wcel 1756   _Vcvv 2975   (/)c0 3640   <.cop 3886   ` cfv 5421  (class class class)co 6094   ndxcnx 14174   sSet csts 14175   +g cplusg 14241   .rcmulr 14242  mulGrpcmgp 16594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4416  ax-nul 4424  ax-pow 4473  ax-pr 4534
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-ral 2723  df-rex 2724  df-rab 2727  df-v 2977  df-sbc 3190  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-nul 3641  df-if 3795  df-sn 3881  df-pr 3883  df-op 3887  df-uni 4095  df-br 4296  df-opab 4354  df-mpt 4355  df-id 4639  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-iota 5384  df-fun 5423  df-fv 5429  df-ov 6097  df-oprab 6098  df-mpt2 6099  df-sets 14183  df-mgp 16595
This theorem is referenced by:  mgpplusg  16598  mgplem  16599  mgpress  16605
  Copyright terms: Public domain W3C validator