MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgpval Structured version   Unicode version

Theorem mgpval 16568
Description: Value of the multiplication group operation. (Contributed by Mario Carneiro, 21-Dec-2014.)
Hypotheses
Ref Expression
mgpval.1  |-  M  =  (mulGrp `  R )
mgpval.2  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
mgpval  |-  M  =  ( R sSet  <. ( +g  `  ndx ) , 
.x.  >. )

Proof of Theorem mgpval
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 mgpval.1 . 2  |-  M  =  (mulGrp `  R )
2 id 22 . . . . 5  |-  ( r  =  R  ->  r  =  R )
3 fveq2 5679 . . . . . . 7  |-  ( r  =  R  ->  ( .r `  r )  =  ( .r `  R
) )
4 mgpval.2 . . . . . . 7  |-  .x.  =  ( .r `  R )
53, 4syl6eqr 2483 . . . . . 6  |-  ( r  =  R  ->  ( .r `  r )  = 
.x.  )
65opeq2d 4054 . . . . 5  |-  ( r  =  R  ->  <. ( +g  `  ndx ) ,  ( .r `  r
) >.  =  <. ( +g  `  ndx ) , 
.x.  >. )
72, 6oveq12d 6098 . . . 4  |-  ( r  =  R  ->  (
r sSet  <. ( +g  `  ndx ) ,  ( .r `  r ) >. )  =  ( R sSet  <. ( +g  `  ndx ) ,  .x.  >. ) )
8 df-mgp 16566 . . . 4  |- mulGrp  =  ( r  e.  _V  |->  ( r sSet  <. ( +g  `  ndx ) ,  ( .r `  r ) >. )
)
9 ovex 6105 . . . 4  |-  ( R sSet  <. ( +g  `  ndx ) ,  .x.  >. )  e.  _V
107, 8, 9fvmpt 5762 . . 3  |-  ( R  e.  _V  ->  (mulGrp `  R )  =  ( R sSet  <. ( +g  `  ndx ) ,  .x.  >. )
)
11 fvprc 5673 . . . 4  |-  ( -.  R  e.  _V  ->  (mulGrp `  R )  =  (/) )
12 reldmsets 14179 . . . . 5  |-  Rel  dom sSet
1312ovprc1 6108 . . . 4  |-  ( -.  R  e.  _V  ->  ( R sSet  <. ( +g  `  ndx ) ,  .x.  >. )  =  (/) )
1411, 13eqtr4d 2468 . . 3  |-  ( -.  R  e.  _V  ->  (mulGrp `  R )  =  ( R sSet  <. ( +g  `  ndx ) ,  .x.  >. )
)
1510, 14pm2.61i 164 . 2  |-  (mulGrp `  R )  =  ( R sSet  <. ( +g  `  ndx ) ,  .x.  >. )
161, 15eqtri 2453 1  |-  M  =  ( R sSet  <. ( +g  `  ndx ) , 
.x.  >. )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1362    e. wcel 1755   _Vcvv 2962   (/)c0 3625   <.cop 3871   ` cfv 5406  (class class class)co 6080   ndxcnx 14154   sSet csts 14155   +g cplusg 14221   .rcmulr 14222  mulGrpcmgp 16565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2964  df-sbc 3176  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-nul 3626  df-if 3780  df-sn 3866  df-pr 3868  df-op 3872  df-uni 4080  df-br 4281  df-opab 4339  df-mpt 4340  df-id 4623  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-iota 5369  df-fun 5408  df-fv 5414  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-sets 14163  df-mgp 16566
This theorem is referenced by:  mgpplusg  16569  mgplem  16570  mgpress  16576
  Copyright terms: Public domain W3C validator