MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgpval Structured version   Visualization version   Unicode version

Theorem mgpval 17804
Description: Value of the multiplication group operation. (Contributed by Mario Carneiro, 21-Dec-2014.)
Hypotheses
Ref Expression
mgpval.1  |-  M  =  (mulGrp `  R )
mgpval.2  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
mgpval  |-  M  =  ( R sSet  <. ( +g  `  ndx ) , 
.x.  >. )

Proof of Theorem mgpval
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 mgpval.1 . 2  |-  M  =  (mulGrp `  R )
2 id 22 . . . . 5  |-  ( r  =  R  ->  r  =  R )
3 fveq2 5879 . . . . . . 7  |-  ( r  =  R  ->  ( .r `  r )  =  ( .r `  R
) )
4 mgpval.2 . . . . . . 7  |-  .x.  =  ( .r `  R )
53, 4syl6eqr 2523 . . . . . 6  |-  ( r  =  R  ->  ( .r `  r )  = 
.x.  )
65opeq2d 4165 . . . . 5  |-  ( r  =  R  ->  <. ( +g  `  ndx ) ,  ( .r `  r
) >.  =  <. ( +g  `  ndx ) , 
.x.  >. )
72, 6oveq12d 6326 . . . 4  |-  ( r  =  R  ->  (
r sSet  <. ( +g  `  ndx ) ,  ( .r `  r ) >. )  =  ( R sSet  <. ( +g  `  ndx ) ,  .x.  >. ) )
8 df-mgp 17802 . . . 4  |- mulGrp  =  ( r  e.  _V  |->  ( r sSet  <. ( +g  `  ndx ) ,  ( .r `  r ) >. )
)
9 ovex 6336 . . . 4  |-  ( R sSet  <. ( +g  `  ndx ) ,  .x.  >. )  e.  _V
107, 8, 9fvmpt 5963 . . 3  |-  ( R  e.  _V  ->  (mulGrp `  R )  =  ( R sSet  <. ( +g  `  ndx ) ,  .x.  >. )
)
11 fvprc 5873 . . . 4  |-  ( -.  R  e.  _V  ->  (mulGrp `  R )  =  (/) )
12 reldmsets 15222 . . . . 5  |-  Rel  dom sSet
1312ovprc1 6339 . . . 4  |-  ( -.  R  e.  _V  ->  ( R sSet  <. ( +g  `  ndx ) ,  .x.  >. )  =  (/) )
1411, 13eqtr4d 2508 . . 3  |-  ( -.  R  e.  _V  ->  (mulGrp `  R )  =  ( R sSet  <. ( +g  `  ndx ) ,  .x.  >. )
)
1510, 14pm2.61i 169 . 2  |-  (mulGrp `  R )  =  ( R sSet  <. ( +g  `  ndx ) ,  .x.  >. )
161, 15eqtri 2493 1  |-  M  =  ( R sSet  <. ( +g  `  ndx ) , 
.x.  >. )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1452    e. wcel 1904   _Vcvv 3031   (/)c0 3722   <.cop 3965   ` cfv 5589  (class class class)co 6308   ndxcnx 15196   sSet csts 15197   +g cplusg 15268   .rcmulr 15269  mulGrpcmgp 17801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-iota 5553  df-fun 5591  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-sets 15205  df-mgp 17802
This theorem is referenced by:  mgpplusg  17805  mgplem  17806  mgpress  17812
  Copyright terms: Public domain W3C validator