MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgpress Structured version   Unicode version

Theorem mgpress 16716
Description: Subgroup commutes with the multiplication group operator. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
mgpress.1  |-  S  =  ( Rs  A )
mgpress.2  |-  M  =  (mulGrp `  R )
Assertion
Ref Expression
mgpress  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( Ms  A )  =  (mulGrp `  S ) )

Proof of Theorem mgpress
StepHypRef Expression
1 mgpress.2 . . 3  |-  M  =  (mulGrp `  R )
2 simpr 461 . . . 4  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  ( Base `  R )  C_  A
)  ->  ( Base `  R )  C_  A
)
3 fvex 5802 . . . . . 6  |-  (mulGrp `  R )  e.  _V
41, 3eqeltri 2535 . . . . 5  |-  M  e. 
_V
54a1i 11 . . . 4  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  ( Base `  R )  C_  A
)  ->  M  e.  _V )
6 simplr 754 . . . 4  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  ( Base `  R )  C_  A
)  ->  A  e.  W )
7 eqid 2451 . . . . 5  |-  ( Ms  A )  =  ( Ms  A )
8 eqid 2451 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
91, 8mgpbas 16711 . . . . 5  |-  ( Base `  R )  =  (
Base `  M )
107, 9ressid2 14337 . . . 4  |-  ( ( ( Base `  R
)  C_  A  /\  M  e.  _V  /\  A  e.  W )  ->  ( Ms  A )  =  M )
112, 5, 6, 10syl3anc 1219 . . 3  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  ( Base `  R )  C_  A
)  ->  ( Ms  A
)  =  M )
12 simpll 753 . . . . 5  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  ( Base `  R )  C_  A
)  ->  R  e.  V )
13 mgpress.1 . . . . . 6  |-  S  =  ( Rs  A )
1413, 8ressid2 14337 . . . . 5  |-  ( ( ( Base `  R
)  C_  A  /\  R  e.  V  /\  A  e.  W )  ->  S  =  R )
152, 12, 6, 14syl3anc 1219 . . . 4  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  ( Base `  R )  C_  A
)  ->  S  =  R )
1615fveq2d 5796 . . 3  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  ( Base `  R )  C_  A
)  ->  (mulGrp `  S
)  =  (mulGrp `  R ) )
171, 11, 163eqtr4a 2518 . 2  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  ( Base `  R )  C_  A
)  ->  ( Ms  A
)  =  (mulGrp `  S ) )
18 eqid 2451 . . . . 5  |-  ( .r
`  R )  =  ( .r `  R
)
191, 18mgpval 16708 . . . 4  |-  M  =  ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R
) >. )
2019oveq1i 6203 . . 3  |-  ( M sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R
) ) >. )  =  ( ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. ) sSet  <.
( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) )
>. )
21 simpr 461 . . . 4  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  -.  ( Base `  R )  C_  A )  ->  -.  ( Base `  R )  C_  A )
224a1i 11 . . . 4  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  -.  ( Base `  R )  C_  A )  ->  M  e.  _V )
23 simplr 754 . . . 4  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  -.  ( Base `  R )  C_  A )  ->  A  e.  W )
247, 9ressval2 14338 . . . 4  |-  ( ( -.  ( Base `  R
)  C_  A  /\  M  e.  _V  /\  A  e.  W )  ->  ( Ms  A )  =  ( M sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R
) ) >. )
)
2521, 22, 23, 24syl3anc 1219 . . 3  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  -.  ( Base `  R )  C_  A )  ->  ( Ms  A )  =  ( M sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R
) ) >. )
)
26 eqid 2451 . . . . . 6  |-  (mulGrp `  S )  =  (mulGrp `  S )
27 eqid 2451 . . . . . 6  |-  ( .r
`  S )  =  ( .r `  S
)
2826, 27mgpval 16708 . . . . 5  |-  (mulGrp `  S )  =  ( S sSet  <. ( +g  `  ndx ) ,  ( .r `  S ) >. )
29 simpll 753 . . . . . . 7  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  -.  ( Base `  R )  C_  A )  ->  R  e.  V )
3013, 8ressval2 14338 . . . . . . 7  |-  ( ( -.  ( Base `  R
)  C_  A  /\  R  e.  V  /\  A  e.  W )  ->  S  =  ( R sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R
) ) >. )
)
3121, 29, 23, 30syl3anc 1219 . . . . . 6  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  -.  ( Base `  R )  C_  A )  ->  S  =  ( R sSet  <. (
Base `  ndx ) ,  ( A  i^i  ( Base `  R ) )
>. ) )
3213, 18ressmulr 14402 . . . . . . . . 9  |-  ( A  e.  W  ->  ( .r `  R )  =  ( .r `  S
) )
3332eqcomd 2459 . . . . . . . 8  |-  ( A  e.  W  ->  ( .r `  S )  =  ( .r `  R
) )
3433ad2antlr 726 . . . . . . 7  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  -.  ( Base `  R )  C_  A )  ->  ( .r `  S )  =  ( .r `  R
) )
3534opeq2d 4167 . . . . . 6  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  -.  ( Base `  R )  C_  A )  ->  <. ( +g  `  ndx ) ,  ( .r `  S
) >.  =  <. ( +g  `  ndx ) ,  ( .r `  R
) >. )
3631, 35oveq12d 6211 . . . . 5  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  -.  ( Base `  R )  C_  A )  ->  ( S sSet  <. ( +g  `  ndx ) ,  ( .r `  S ) >. )  =  ( ( R sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R
) ) >. ) sSet  <.
( +g  `  ndx ) ,  ( .r `  R ) >. )
)
3728, 36syl5eq 2504 . . . 4  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  -.  ( Base `  R )  C_  A )  ->  (mulGrp `  S )  =  ( ( R sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) )
>. ) sSet  <. ( +g  ` 
ndx ) ,  ( .r `  R )
>. ) )
38 1ne2 10638 . . . . . . 7  |-  1  =/=  2
3938necomi 2718 . . . . . 6  |-  2  =/=  1
40 plusgndx 14383 . . . . . . 7  |-  ( +g  ` 
ndx )  =  2
41 basendx 14334 . . . . . . 7  |-  ( Base `  ndx )  =  1
4240, 41neeq12i 2737 . . . . . 6  |-  ( ( +g  `  ndx )  =/=  ( Base `  ndx ) 
<->  2  =/=  1 )
4339, 42mpbir 209 . . . . 5  |-  ( +g  ` 
ndx )  =/=  ( Base `  ndx )
44 fvex 5802 . . . . . 6  |-  ( .r
`  R )  e. 
_V
45 fvex 5802 . . . . . . 7  |-  ( Base `  R )  e.  _V
4645inex2 4535 . . . . . 6  |-  ( A  i^i  ( Base `  R
) )  e.  _V
47 fvex 5802 . . . . . . 7  |-  ( +g  ` 
ndx )  e.  _V
48 fvex 5802 . . . . . . 7  |-  ( Base `  ndx )  e.  _V
4947, 48setscom 14315 . . . . . 6  |-  ( ( ( R  e.  V  /\  ( +g  `  ndx )  =/=  ( Base `  ndx ) )  /\  (
( .r `  R
)  e.  _V  /\  ( A  i^i  ( Base `  R ) )  e.  _V ) )  ->  ( ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. ) sSet  <.
( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) )
>. )  =  (
( R sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) ) >.
) sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. )
)
5044, 46, 49mpanr12 685 . . . . 5  |-  ( ( R  e.  V  /\  ( +g  `  ndx )  =/=  ( Base `  ndx ) )  ->  (
( R sSet  <. ( +g  ` 
ndx ) ,  ( .r `  R )
>. ) sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) ) >.
)  =  ( ( R sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R
) ) >. ) sSet  <.
( +g  `  ndx ) ,  ( .r `  R ) >. )
)
5129, 43, 50sylancl 662 . . . 4  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  -.  ( Base `  R )  C_  A )  ->  (
( R sSet  <. ( +g  ` 
ndx ) ,  ( .r `  R )
>. ) sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) ) >.
)  =  ( ( R sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R
) ) >. ) sSet  <.
( +g  `  ndx ) ,  ( .r `  R ) >. )
)
5237, 51eqtr4d 2495 . . 3  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  -.  ( Base `  R )  C_  A )  ->  (mulGrp `  S )  =  ( ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R
) >. ) sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) )
>. ) )
5320, 25, 523eqtr4a 2518 . 2  |-  ( ( ( R  e.  V  /\  A  e.  W
)  /\  -.  ( Base `  R )  C_  A )  ->  ( Ms  A )  =  (mulGrp `  S ) )
5417, 53pm2.61dan 789 1  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( Ms  A )  =  (mulGrp `  S ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2644   _Vcvv 3071    i^i cin 3428    C_ wss 3429   <.cop 3984   ` cfv 5519  (class class class)co 6193   1c1 9387   2c2 10475   ndxcnx 14282   sSet csts 14283   Basecbs 14285   ↾s cress 14286   +g cplusg 14349   .rcmulr 14350  mulGrpcmgp 16705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-cnex 9442  ax-resscn 9443  ax-1cn 9444  ax-icn 9445  ax-addcl 9446  ax-addrcl 9447  ax-mulcl 9448  ax-mulrcl 9449  ax-mulcom 9450  ax-addass 9451  ax-mulass 9452  ax-distr 9453  ax-i2m1 9454  ax-1ne0 9455  ax-1rid 9456  ax-rnegex 9457  ax-rrecex 9458  ax-cnre 9459  ax-pre-lttri 9460  ax-pre-lttrn 9461  ax-pre-ltadd 9462  ax-pre-mulgt0 9463
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-pss 3445  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-tp 3983  df-op 3985  df-uni 4193  df-iun 4274  df-br 4394  df-opab 4452  df-mpt 4453  df-tr 4487  df-eprel 4733  df-id 4737  df-po 4742  df-so 4743  df-fr 4780  df-we 4782  df-ord 4823  df-on 4824  df-lim 4825  df-suc 4826  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-riota 6154  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-om 6580  df-recs 6935  df-rdg 6969  df-er 7204  df-en 7414  df-dom 7415  df-sdom 7416  df-pnf 9524  df-mnf 9525  df-xr 9526  df-ltxr 9527  df-le 9528  df-sub 9701  df-neg 9702  df-nn 10427  df-2 10484  df-3 10485  df-ndx 14288  df-slot 14289  df-base 14290  df-sets 14291  df-ress 14292  df-plusg 14362  df-mulr 14363  df-mgp 16706
This theorem is referenced by:  subrgcrng  16984  subrgsubm  16993  resrhm  17009  nn0srg  17999  rge0srg  18000  zringmpg  18034  rdivmuldivd  26397  xrge0iifmhm  26507  xrge0pluscn  26508  xrge0tmd  26514  m2cpmmhm  31211
  Copyright terms: Public domain W3C validator