MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgplem Structured version   Unicode version

Theorem mgplem 17663
Description: Lemma for mgpbas 17664. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
mgpbas.1  |-  M  =  (mulGrp `  R )
mgplem.2  |-  E  = Slot 
N
mgplem.3  |-  N  e.  NN
mgplem.4  |-  N  =/=  2
Assertion
Ref Expression
mgplem  |-  ( E `
 R )  =  ( E `  M
)

Proof of Theorem mgplem
StepHypRef Expression
1 mgplem.2 . . . 4  |-  E  = Slot 
N
2 mgplem.3 . . . 4  |-  N  e.  NN
31, 2ndxid 15105 . . 3  |-  E  = Slot  ( E `  ndx )
4 mgplem.4 . . . 4  |-  N  =/=  2
51, 2ndxarg 15104 . . . . 5  |-  ( E `
 ndx )  =  N
6 plusgndx 15186 . . . . 5  |-  ( +g  ` 
ndx )  =  2
75, 6neeq12i 2720 . . . 4  |-  ( ( E `  ndx )  =/=  ( +g  `  ndx ) 
<->  N  =/=  2 )
84, 7mpbir 212 . . 3  |-  ( E `
 ndx )  =/=  ( +g  `  ndx )
93, 8setsnid 15128 . 2  |-  ( E `
 R )  =  ( E `  ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. )
)
10 mgpbas.1 . . . 4  |-  M  =  (mulGrp `  R )
11 eqid 2429 . . . 4  |-  ( .r
`  R )  =  ( .r `  R
)
1210, 11mgpval 17661 . . 3  |-  M  =  ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R
) >. )
1312fveq2i 5884 . 2  |-  ( E `
 M )  =  ( E `  ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. )
)
149, 13eqtr4i 2461 1  |-  ( E `
 R )  =  ( E `  M
)
Colors of variables: wff setvar class
Syntax hints:    = wceq 1437    e. wcel 1870    =/= wne 2625   <.cop 4008   ` cfv 5601  (class class class)co 6305   NNcn 10609   2c2 10659   ndxcnx 15081   sSet csts 15082  Slot cslot 15083   +g cplusg 15152   .rcmulr 15153  mulGrpcmgp 17658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-i2m1 9606  ax-1ne0 9607  ax-rrecex 9610  ax-cnre 9611
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-nn 10610  df-2 10668  df-ndx 15087  df-slot 15088  df-sets 15090  df-plusg 15165  df-mgp 17659
This theorem is referenced by:  mgpbas  17664  mgpsca  17665  mgptset  17666  mgpds  17668
  Copyright terms: Public domain W3C validator