MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgmcl Structured version   Unicode version

Theorem mgmcl 15853
Description: Closure of the operation of a magma. (Contributed by FL, 14-Sep-2010.) (Revised by AV, 13-Jan-2020.)
Hypotheses
Ref Expression
mgmcl.b  |-  B  =  ( Base `  M
)
mgmcl.o  |-  .o.  =  ( +g  `  M )
Assertion
Ref Expression
mgmcl  |-  ( ( M  e. Mgm  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .o.  Y )  e.  B )

Proof of Theorem mgmcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgmcl.b . . . . 5  |-  B  =  ( Base `  M
)
2 mgmcl.o . . . . 5  |-  .o.  =  ( +g  `  M )
31, 2ismgm 15851 . . . 4  |-  ( M  e. Mgm  ->  ( M  e. Mgm  <->  A. x  e.  B  A. y  e.  B  (
x  .o.  y )  e.  B ) )
43ibi 241 . . 3  |-  ( M  e. Mgm  ->  A. x  e.  B  A. y  e.  B  ( x  .o.  y
)  e.  B )
5 ovrspc2v 6303 . . . 4  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  A. x  e.  B  A. y  e.  B  ( x  .o.  y )  e.  B
)  ->  ( X  .o.  Y )  e.  B
)
65expcom 435 . . 3  |-  ( A. x  e.  B  A. y  e.  B  (
x  .o.  y )  e.  B  ->  ( ( X  e.  B  /\  Y  e.  B )  ->  ( X  .o.  Y
)  e.  B ) )
74, 6syl 16 . 2  |-  ( M  e. Mgm  ->  ( ( X  e.  B  /\  Y  e.  B )  ->  ( X  .o.  Y )  e.  B ) )
873impib 1195 1  |-  ( ( M  e. Mgm  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .o.  Y )  e.  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804   A.wral 2793   ` cfv 5578  (class class class)co 6281   Basecbs 14613   +g cplusg 14678  Mgmcmgm 15848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-nul 4566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-rab 2802  df-v 3097  df-sbc 3314  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-br 4438  df-iota 5541  df-fv 5586  df-ov 6284  df-mgm 15850
This theorem is referenced by:  isnmgm  15854  mgmplusf  15859  gsummgmpropd  15880  mndcl  15907  mgmhmf1o  32313  idmgmhm  32314  issubmgm2  32316  rabsubmgmd  32317  mgmhmco  32327  mgmhmeql  32329  submgmacs  32330  mgmplusgiopALT  32355
  Copyright terms: Public domain W3C validator