MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metustto Unicode version

Theorem metustto 18541
Description: Any two elements of the filter base generated by the metric 
D can be compared, like for RR+ (i.e. it's totally ordered). (Contributed by Thierry Arnoux, 22-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metust.1  |-  F  =  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) )
Assertion
Ref Expression
metustto  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  F  /\  B  e.  F )  ->  ( A  C_  B  \/  B  C_  A ) )
Distinct variable groups:    B, a    D, a    X, a    A, a    F, a

Proof of Theorem metustto
Dummy variable  b is distinct from all other variables.
StepHypRef Expression
1 simpll 731 . . . . 5  |-  ( ( ( a  e.  RR+  /\  b  e.  RR+ )  /\  ( A  =  ( `' D " ( 0 [,) a ) )  /\  B  =  ( `' D " ( 0 [,) b ) ) ) )  ->  a  e.  RR+ )
21rpred 10604 . . . 4  |-  ( ( ( a  e.  RR+  /\  b  e.  RR+ )  /\  ( A  =  ( `' D " ( 0 [,) a ) )  /\  B  =  ( `' D " ( 0 [,) b ) ) ) )  ->  a  e.  RR )
3 simplr 732 . . . . 5  |-  ( ( ( a  e.  RR+  /\  b  e.  RR+ )  /\  ( A  =  ( `' D " ( 0 [,) a ) )  /\  B  =  ( `' D " ( 0 [,) b ) ) ) )  ->  b  e.  RR+ )
43rpred 10604 . . . 4  |-  ( ( ( a  e.  RR+  /\  b  e.  RR+ )  /\  ( A  =  ( `' D " ( 0 [,) a ) )  /\  B  =  ( `' D " ( 0 [,) b ) ) ) )  ->  b  e.  RR )
5 simpllr 736 . . . . . . . 8  |-  ( ( ( ( a  e.  RR+  /\  b  e.  RR+ )  /\  ( A  =  ( `' D "
( 0 [,) a
) )  /\  B  =  ( `' D " ( 0 [,) b
) ) ) )  /\  a  <_  b
)  ->  b  e.  RR+ )
65rpred 10604 . . . . . . 7  |-  ( ( ( ( a  e.  RR+  /\  b  e.  RR+ )  /\  ( A  =  ( `' D "
( 0 [,) a
) )  /\  B  =  ( `' D " ( 0 [,) b
) ) ) )  /\  a  <_  b
)  ->  b  e.  RR )
7 0xr 9087 . . . . . . . . . 10  |-  0  e.  RR*
87a1i 11 . . . . . . . . 9  |-  ( ( b  e.  RR  /\  a  <_  b )  -> 
0  e.  RR* )
9 simpl 444 . . . . . . . . . 10  |-  ( ( b  e.  RR  /\  a  <_  b )  -> 
b  e.  RR )
109rexrd 9090 . . . . . . . . 9  |-  ( ( b  e.  RR  /\  a  <_  b )  -> 
b  e.  RR* )
11 0le0 10037 . . . . . . . . . 10  |-  0  <_  0
1211a1i 11 . . . . . . . . 9  |-  ( ( b  e.  RR  /\  a  <_  b )  -> 
0  <_  0 )
13 simpr 448 . . . . . . . . 9  |-  ( ( b  e.  RR  /\  a  <_  b )  -> 
a  <_  b )
14 icossico 10936 . . . . . . . . 9  |-  ( ( ( 0  e.  RR*  /\  b  e.  RR* )  /\  ( 0  <_  0  /\  a  <_  b ) )  ->  ( 0 [,) a )  C_  ( 0 [,) b
) )
158, 10, 12, 13, 14syl22anc 1185 . . . . . . . 8  |-  ( ( b  e.  RR  /\  a  <_  b )  -> 
( 0 [,) a
)  C_  ( 0 [,) b ) )
16 imass2 5199 . . . . . . . 8  |-  ( ( 0 [,) a ) 
C_  ( 0 [,) b )  ->  ( `' D " ( 0 [,) a ) ) 
C_  ( `' D " ( 0 [,) b
) ) )
1715, 16syl 16 . . . . . . 7  |-  ( ( b  e.  RR  /\  a  <_  b )  -> 
( `' D "
( 0 [,) a
) )  C_  ( `' D " ( 0 [,) b ) ) )
186, 17sylancom 649 . . . . . 6  |-  ( ( ( ( a  e.  RR+  /\  b  e.  RR+ )  /\  ( A  =  ( `' D "
( 0 [,) a
) )  /\  B  =  ( `' D " ( 0 [,) b
) ) ) )  /\  a  <_  b
)  ->  ( `' D " ( 0 [,) a ) )  C_  ( `' D " ( 0 [,) b ) ) )
19 simplrl 737 . . . . . 6  |-  ( ( ( ( a  e.  RR+  /\  b  e.  RR+ )  /\  ( A  =  ( `' D "
( 0 [,) a
) )  /\  B  =  ( `' D " ( 0 [,) b
) ) ) )  /\  a  <_  b
)  ->  A  =  ( `' D " ( 0 [,) a ) ) )
20 simplrr 738 . . . . . 6  |-  ( ( ( ( a  e.  RR+  /\  b  e.  RR+ )  /\  ( A  =  ( `' D "
( 0 [,) a
) )  /\  B  =  ( `' D " ( 0 [,) b
) ) ) )  /\  a  <_  b
)  ->  B  =  ( `' D " ( 0 [,) b ) ) )
2118, 19, 203sstr4d 3351 . . . . 5  |-  ( ( ( ( a  e.  RR+  /\  b  e.  RR+ )  /\  ( A  =  ( `' D "
( 0 [,) a
) )  /\  B  =  ( `' D " ( 0 [,) b
) ) ) )  /\  a  <_  b
)  ->  A  C_  B
)
2221orcd 382 . . . 4  |-  ( ( ( ( a  e.  RR+  /\  b  e.  RR+ )  /\  ( A  =  ( `' D "
( 0 [,) a
) )  /\  B  =  ( `' D " ( 0 [,) b
) ) ) )  /\  a  <_  b
)  ->  ( A  C_  B  \/  B  C_  A ) )
23 simplll 735 . . . . . . . 8  |-  ( ( ( ( a  e.  RR+  /\  b  e.  RR+ )  /\  ( A  =  ( `' D "
( 0 [,) a
) )  /\  B  =  ( `' D " ( 0 [,) b
) ) ) )  /\  b  <_  a
)  ->  a  e.  RR+ )
2423rpred 10604 . . . . . . 7  |-  ( ( ( ( a  e.  RR+  /\  b  e.  RR+ )  /\  ( A  =  ( `' D "
( 0 [,) a
) )  /\  B  =  ( `' D " ( 0 [,) b
) ) ) )  /\  b  <_  a
)  ->  a  e.  RR )
257a1i 11 . . . . . . . . 9  |-  ( ( a  e.  RR  /\  b  <_  a )  -> 
0  e.  RR* )
26 simpl 444 . . . . . . . . . 10  |-  ( ( a  e.  RR  /\  b  <_  a )  -> 
a  e.  RR )
2726rexrd 9090 . . . . . . . . 9  |-  ( ( a  e.  RR  /\  b  <_  a )  -> 
a  e.  RR* )
2811a1i 11 . . . . . . . . 9  |-  ( ( a  e.  RR  /\  b  <_  a )  -> 
0  <_  0 )
29 simpr 448 . . . . . . . . 9  |-  ( ( a  e.  RR  /\  b  <_  a )  -> 
b  <_  a )
30 icossico 10936 . . . . . . . . 9  |-  ( ( ( 0  e.  RR*  /\  a  e.  RR* )  /\  ( 0  <_  0  /\  b  <_  a ) )  ->  ( 0 [,) b )  C_  ( 0 [,) a
) )
3125, 27, 28, 29, 30syl22anc 1185 . . . . . . . 8  |-  ( ( a  e.  RR  /\  b  <_  a )  -> 
( 0 [,) b
)  C_  ( 0 [,) a ) )
32 imass2 5199 . . . . . . . 8  |-  ( ( 0 [,) b ) 
C_  ( 0 [,) a )  ->  ( `' D " ( 0 [,) b ) ) 
C_  ( `' D " ( 0 [,) a
) ) )
3331, 32syl 16 . . . . . . 7  |-  ( ( a  e.  RR  /\  b  <_  a )  -> 
( `' D "
( 0 [,) b
) )  C_  ( `' D " ( 0 [,) a ) ) )
3424, 33sylancom 649 . . . . . 6  |-  ( ( ( ( a  e.  RR+  /\  b  e.  RR+ )  /\  ( A  =  ( `' D "
( 0 [,) a
) )  /\  B  =  ( `' D " ( 0 [,) b
) ) ) )  /\  b  <_  a
)  ->  ( `' D " ( 0 [,) b ) )  C_  ( `' D " ( 0 [,) a ) ) )
35 simplrr 738 . . . . . 6  |-  ( ( ( ( a  e.  RR+  /\  b  e.  RR+ )  /\  ( A  =  ( `' D "
( 0 [,) a
) )  /\  B  =  ( `' D " ( 0 [,) b
) ) ) )  /\  b  <_  a
)  ->  B  =  ( `' D " ( 0 [,) b ) ) )
36 simplrl 737 . . . . . 6  |-  ( ( ( ( a  e.  RR+  /\  b  e.  RR+ )  /\  ( A  =  ( `' D "
( 0 [,) a
) )  /\  B  =  ( `' D " ( 0 [,) b
) ) ) )  /\  b  <_  a
)  ->  A  =  ( `' D " ( 0 [,) a ) ) )
3734, 35, 363sstr4d 3351 . . . . 5  |-  ( ( ( ( a  e.  RR+  /\  b  e.  RR+ )  /\  ( A  =  ( `' D "
( 0 [,) a
) )  /\  B  =  ( `' D " ( 0 [,) b
) ) ) )  /\  b  <_  a
)  ->  B  C_  A
)
3837olcd 383 . . . 4  |-  ( ( ( ( a  e.  RR+  /\  b  e.  RR+ )  /\  ( A  =  ( `' D "
( 0 [,) a
) )  /\  B  =  ( `' D " ( 0 [,) b
) ) ) )  /\  b  <_  a
)  ->  ( A  C_  B  \/  B  C_  A ) )
392, 4, 22, 38lecasei 9135 . . 3  |-  ( ( ( a  e.  RR+  /\  b  e.  RR+ )  /\  ( A  =  ( `' D " ( 0 [,) a ) )  /\  B  =  ( `' D " ( 0 [,) b ) ) ) )  ->  ( A  C_  B  \/  B  C_  A ) )
4039adantlll 699 . 2  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F  /\  B  e.  F
)  /\  a  e.  RR+ )  /\  b  e.  RR+ )  /\  ( A  =  ( `' D " ( 0 [,) a ) )  /\  B  =  ( `' D " ( 0 [,) b ) ) ) )  ->  ( A  C_  B  \/  B  C_  A ) )
41 metust.1 . . . . . 6  |-  F  =  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) )
4241metustel 18535 . . . . 5  |-  ( D  e.  (PsMet `  X
)  ->  ( A  e.  F  <->  E. a  e.  RR+  A  =  ( `' D " ( 0 [,) a
) ) ) )
4342biimpa 471 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  ->  E. a  e.  RR+  A  =  ( `' D " ( 0 [,) a ) ) )
44433adant3 977 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  F  /\  B  e.  F )  ->  E. a  e.  RR+  A  =  ( `' D " ( 0 [,) a ) ) )
45 oveq2 6048 . . . . . . . . . 10  |-  ( a  =  b  ->  (
0 [,) a )  =  ( 0 [,) b ) )
4645imaeq2d 5162 . . . . . . . . 9  |-  ( a  =  b  ->  ( `' D " ( 0 [,) a ) )  =  ( `' D " ( 0 [,) b
) ) )
4746cbvmptv 4260 . . . . . . . 8  |-  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) )  =  ( b  e.  RR+  |->  ( `' D " ( 0 [,) b ) ) )
4847rneqi 5055 . . . . . . 7  |-  ran  (
a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) )  =  ran  (
b  e.  RR+  |->  ( `' D " ( 0 [,) b ) ) )
4941, 48eqtri 2424 . . . . . 6  |-  F  =  ran  ( b  e.  RR+  |->  ( `' D " ( 0 [,) b
) ) )
5049metustel 18535 . . . . 5  |-  ( D  e.  (PsMet `  X
)  ->  ( B  e.  F  <->  E. b  e.  RR+  B  =  ( `' D " ( 0 [,) b
) ) ) )
5150biimpa 471 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  B  e.  F )  ->  E. b  e.  RR+  B  =  ( `' D " ( 0 [,) b ) ) )
52513adant2 976 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  F  /\  B  e.  F )  ->  E. b  e.  RR+  B  =  ( `' D " ( 0 [,) b ) ) )
53 reeanv 2835 . . 3  |-  ( E. a  e.  RR+  E. b  e.  RR+  ( A  =  ( `' D "
( 0 [,) a
) )  /\  B  =  ( `' D " ( 0 [,) b
) ) )  <->  ( E. a  e.  RR+  A  =  ( `' D "
( 0 [,) a
) )  /\  E. b  e.  RR+  B  =  ( `' D "
( 0 [,) b
) ) ) )
5444, 52, 53sylanbrc 646 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  F  /\  B  e.  F )  ->  E. a  e.  RR+  E. b  e.  RR+  ( A  =  ( `' D " ( 0 [,) a ) )  /\  B  =  ( `' D " ( 0 [,) b ) ) ) )
5540, 54r19.29_2a 2812 1  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  F  /\  B  e.  F )  ->  ( A  C_  B  \/  B  C_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   E.wrex 2667    C_ wss 3280   class class class wbr 4172    e. cmpt 4226   `'ccnv 4836   ran crn 4838   "cima 4840   ` cfv 5413  (class class class)co 6040   RRcr 8945   0cc0 8946   RR*cxr 9075    <_ cle 9077   RR+crp 10568   [,)cico 10874  PsMetcpsmet 16640
This theorem is referenced by:  metustfbas  18549
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-i2m1 9014  ax-1ne0 9015  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-po 4463  df-so 4464  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-rp 10569  df-ico 10878
  Copyright terms: Public domain W3C validator