MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metustsym Structured version   Unicode version

Theorem metustsym 21501
Description: Elements of the filter base generated by the metric  D are symmetric. (Contributed by Thierry Arnoux, 28-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metust.1  |-  F  =  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) )
Assertion
Ref Expression
metustsym  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  ->  `' A  =  A )
Distinct variable groups:    D, a    X, a    A, a    F, a

Proof of Theorem metustsym
Dummy variables  p  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metust.1 . . . 4  |-  F  =  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) )
21metustss 21497 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  ->  A  C_  ( X  X.  X
) )
3 cnvss 5027 . . . 4  |-  ( A 
C_  ( X  X.  X )  ->  `' A  C_  `' ( X  X.  X ) )
4 cnvxp 5274 . . . 4  |-  `' ( X  X.  X )  =  ( X  X.  X )
53, 4syl6sseq 3516 . . 3  |-  ( A 
C_  ( X  X.  X )  ->  `' A  C_  ( X  X.  X ) )
62, 5syl 17 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  ->  `' A  C_  ( X  X.  X ) )
7 simp-4l 774 . . . . . . . . . 10  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  ->  D  e.  (PsMet `  X
) )
8 simpr1r 1063 . . . . . . . . . . 11  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  /\  (
( p  e.  X  /\  q  e.  X
)  /\  a  e.  RR+ 
/\  A  =  ( `' D " ( 0 [,) a ) ) ) )  ->  q  e.  X )
983anassrs 1228 . . . . . . . . . 10  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  -> 
q  e.  X )
10 simpr1l 1062 . . . . . . . . . . 11  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  /\  (
( p  e.  X  /\  q  e.  X
)  /\  a  e.  RR+ 
/\  A  =  ( `' D " ( 0 [,) a ) ) ) )  ->  p  e.  X )
11103anassrs 1228 . . . . . . . . . 10  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  ->  p  e.  X )
12 psmetsym 21257 . . . . . . . . . 10  |-  ( ( D  e.  (PsMet `  X )  /\  q  e.  X  /\  p  e.  X )  ->  (
q D p )  =  ( p D q ) )
137, 9, 11, 12syl3anc 1264 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  -> 
( q D p )  =  ( p D q ) )
14 df-ov 6308 . . . . . . . . 9  |-  ( q D p )  =  ( D `  <. q ,  p >. )
15 df-ov 6308 . . . . . . . . 9  |-  ( p D q )  =  ( D `  <. p ,  q >. )
1613, 14, 153eqtr3g 2493 . . . . . . . 8  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  -> 
( D `  <. q ,  p >. )  =  ( D `  <. p ,  q >.
) )
1716eleq1d 2498 . . . . . . 7  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  -> 
( ( D `  <. q ,  p >. )  e.  ( 0 [,) a )  <->  ( D `  <. p ,  q
>. )  e.  (
0 [,) a ) ) )
18 psmetf 21253 . . . . . . . . 9  |-  ( D  e.  (PsMet `  X
)  ->  D :
( X  X.  X
) --> RR* )
19 ffun 5748 . . . . . . . . 9  |-  ( D : ( X  X.  X ) --> RR*  ->  Fun 
D )
207, 18, 193syl 18 . . . . . . . 8  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  ->  Fun  D )
21 simpllr 767 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  -> 
( p  e.  X  /\  q  e.  X
) )
2221ancomd 452 . . . . . . . . . 10  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  -> 
( q  e.  X  /\  p  e.  X
) )
23 opelxpi 4886 . . . . . . . . . 10  |-  ( ( q  e.  X  /\  p  e.  X )  -> 
<. q ,  p >.  e.  ( X  X.  X
) )
2422, 23syl 17 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  ->  <. q ,  p >.  e.  ( X  X.  X
) )
25 fdm 5750 . . . . . . . . . 10  |-  ( D : ( X  X.  X ) --> RR*  ->  dom 
D  =  ( X  X.  X ) )
267, 18, 253syl 18 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  ->  dom  D  =  ( X  X.  X ) )
2724, 26eleqtrrd 2520 . . . . . . . 8  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  ->  <. q ,  p >.  e. 
dom  D )
28 fvimacnv 6012 . . . . . . . 8  |-  ( ( Fun  D  /\  <. q ,  p >.  e.  dom  D )  ->  ( ( D `  <. q ,  p >. )  e.  ( 0 [,) a )  <->  <. q ,  p >.  e.  ( `' D "
( 0 [,) a
) ) ) )
2920, 27, 28syl2anc 665 . . . . . . 7  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  -> 
( ( D `  <. q ,  p >. )  e.  ( 0 [,) a )  <->  <. q ,  p >.  e.  ( `' D " ( 0 [,) a ) ) ) )
30 opelxpi 4886 . . . . . . . . . 10  |-  ( ( p  e.  X  /\  q  e.  X )  -> 
<. p ,  q >.  e.  ( X  X.  X
) )
3121, 30syl 17 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  ->  <. p ,  q >.  e.  ( X  X.  X
) )
3231, 26eleqtrrd 2520 . . . . . . . 8  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  ->  <. p ,  q >.  e.  dom  D )
33 fvimacnv 6012 . . . . . . . 8  |-  ( ( Fun  D  /\  <. p ,  q >.  e.  dom  D )  ->  ( ( D `  <. p ,  q >. )  e.  ( 0 [,) a )  <->  <. p ,  q >.  e.  ( `' D "
( 0 [,) a
) ) ) )
3420, 32, 33syl2anc 665 . . . . . . 7  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  -> 
( ( D `  <. p ,  q >.
)  e.  ( 0 [,) a )  <->  <. p ,  q >.  e.  ( `' D " ( 0 [,) a ) ) ) )
3517, 29, 343bitr3d 286 . . . . . 6  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  -> 
( <. q ,  p >.  e.  ( `' D " ( 0 [,) a
) )  <->  <. p ,  q >.  e.  ( `' D " ( 0 [,) a ) ) ) )
36 simpr 462 . . . . . . 7  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  ->  A  =  ( `' D " ( 0 [,) a ) ) )
3736eleq2d 2499 . . . . . 6  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  -> 
( <. q ,  p >.  e.  A  <->  <. q ,  p >.  e.  ( `' D " ( 0 [,) a ) ) ) )
3836eleq2d 2499 . . . . . 6  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  -> 
( <. p ,  q
>.  e.  A  <->  <. p ,  q >.  e.  ( `' D " ( 0 [,) a ) ) ) )
3935, 37, 383bitr4d 288 . . . . 5  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  -> 
( <. q ,  p >.  e.  A  <->  <. p ,  q >.  e.  A
) )
40 eqid 2429 . . . . . . . . 9  |-  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) )  =  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) )
4140elrnmpt 5101 . . . . . . . 8  |-  ( A  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) )  ->  ( A  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) )  <->  E. a  e.  RR+  A  =  ( `' D " ( 0 [,) a ) ) ) )
4241ibi 244 . . . . . . 7  |-  ( A  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) )  ->  E. a  e.  RR+  A  =  ( `' D " ( 0 [,) a ) ) )
4342, 1eleq2s 2537 . . . . . 6  |-  ( A  e.  F  ->  E. a  e.  RR+  A  =  ( `' D " ( 0 [,) a ) ) )
4443ad2antlr 731 . . . . 5  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  ->  E. a  e.  RR+  A  =  ( `' D " ( 0 [,) a ) ) )
4539, 44r19.29a 2977 . . . 4  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  ->  ( <. q ,  p >.  e.  A  <->  <.
p ,  q >.  e.  A ) )
46 df-br 4427 . . . . 5  |-  ( p `' A q  <->  <. p ,  q >.  e.  `' A )
47 vex 3090 . . . . . 6  |-  p  e. 
_V
48 vex 3090 . . . . . 6  |-  q  e. 
_V
4947, 48opelcnv 5036 . . . . 5  |-  ( <.
p ,  q >.  e.  `' A  <->  <. q ,  p >.  e.  A )
5046, 49bitri 252 . . . 4  |-  ( p `' A q  <->  <. q ,  p >.  e.  A
)
51 df-br 4427 . . . 4  |-  ( p A q  <->  <. p ,  q >.  e.  A
)
5245, 50, 513bitr4g 291 . . 3  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  ->  ( p `' A q  <->  p A
q ) )
53523impb 1201 . 2  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  /\  p  e.  X  /\  q  e.  X )  ->  (
p `' A q  <-> 
p A q ) )
546, 2, 53eqbrrdva 5024 1  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  ->  `' A  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1870   E.wrex 2783    C_ wss 3442   <.cop 4008   class class class wbr 4426    |-> cmpt 4484    X. cxp 4852   `'ccnv 4853   dom cdm 4854   ran crn 4855   "cima 4857   Fun wfun 5595   -->wf 5597   ` cfv 5601  (class class class)co 6305   0cc0 9538   RR*cxr 9673   RR+crp 11302   [,)cico 11637  PsMetcpsmet 18889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-po 4775  df-so 4776  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-er 7371  df-map 7482  df-en 7578  df-dom 7579  df-sdom 7580  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-xadd 11410  df-psmet 18897
This theorem is referenced by:  metust  21504
  Copyright terms: Public domain W3C validator