MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metustsym Structured version   Visualization version   Unicode version

Theorem metustsym 21570
Description: Elements of the filter base generated by the metric  D are symmetric. (Contributed by Thierry Arnoux, 28-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metust.1  |-  F  =  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) )
Assertion
Ref Expression
metustsym  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  ->  `' A  =  A )
Distinct variable groups:    D, a    X, a    A, a    F, a

Proof of Theorem metustsym
Dummy variables  p  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metust.1 . . . 4  |-  F  =  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) )
21metustss 21566 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  ->  A  C_  ( X  X.  X
) )
3 cnvss 5007 . . . 4  |-  ( A 
C_  ( X  X.  X )  ->  `' A  C_  `' ( X  X.  X ) )
4 cnvxp 5254 . . . 4  |-  `' ( X  X.  X )  =  ( X  X.  X )
53, 4syl6sseq 3478 . . 3  |-  ( A 
C_  ( X  X.  X )  ->  `' A  C_  ( X  X.  X ) )
62, 5syl 17 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  ->  `' A  C_  ( X  X.  X ) )
7 simp-4l 776 . . . . . . . . . 10  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  ->  D  e.  (PsMet `  X
) )
8 simpr1r 1066 . . . . . . . . . . 11  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  /\  (
( p  e.  X  /\  q  e.  X
)  /\  a  e.  RR+ 
/\  A  =  ( `' D " ( 0 [,) a ) ) ) )  ->  q  e.  X )
983anassrs 1232 . . . . . . . . . 10  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  -> 
q  e.  X )
10 simpr1l 1065 . . . . . . . . . . 11  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  /\  (
( p  e.  X  /\  q  e.  X
)  /\  a  e.  RR+ 
/\  A  =  ( `' D " ( 0 [,) a ) ) ) )  ->  p  e.  X )
11103anassrs 1232 . . . . . . . . . 10  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  ->  p  e.  X )
12 psmetsym 21326 . . . . . . . . . 10  |-  ( ( D  e.  (PsMet `  X )  /\  q  e.  X  /\  p  e.  X )  ->  (
q D p )  =  ( p D q ) )
137, 9, 11, 12syl3anc 1268 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  -> 
( q D p )  =  ( p D q ) )
14 df-ov 6293 . . . . . . . . 9  |-  ( q D p )  =  ( D `  <. q ,  p >. )
15 df-ov 6293 . . . . . . . . 9  |-  ( p D q )  =  ( D `  <. p ,  q >. )
1613, 14, 153eqtr3g 2508 . . . . . . . 8  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  -> 
( D `  <. q ,  p >. )  =  ( D `  <. p ,  q >.
) )
1716eleq1d 2513 . . . . . . 7  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  -> 
( ( D `  <. q ,  p >. )  e.  ( 0 [,) a )  <->  ( D `  <. p ,  q
>. )  e.  (
0 [,) a ) ) )
18 psmetf 21322 . . . . . . . . 9  |-  ( D  e.  (PsMet `  X
)  ->  D :
( X  X.  X
) --> RR* )
19 ffun 5731 . . . . . . . . 9  |-  ( D : ( X  X.  X ) --> RR*  ->  Fun 
D )
207, 18, 193syl 18 . . . . . . . 8  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  ->  Fun  D )
21 simpllr 769 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  -> 
( p  e.  X  /\  q  e.  X
) )
2221ancomd 453 . . . . . . . . . 10  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  -> 
( q  e.  X  /\  p  e.  X
) )
23 opelxpi 4866 . . . . . . . . . 10  |-  ( ( q  e.  X  /\  p  e.  X )  -> 
<. q ,  p >.  e.  ( X  X.  X
) )
2422, 23syl 17 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  ->  <. q ,  p >.  e.  ( X  X.  X
) )
25 fdm 5733 . . . . . . . . . 10  |-  ( D : ( X  X.  X ) --> RR*  ->  dom 
D  =  ( X  X.  X ) )
267, 18, 253syl 18 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  ->  dom  D  =  ( X  X.  X ) )
2724, 26eleqtrrd 2532 . . . . . . . 8  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  ->  <. q ,  p >.  e. 
dom  D )
28 fvimacnv 5997 . . . . . . . 8  |-  ( ( Fun  D  /\  <. q ,  p >.  e.  dom  D )  ->  ( ( D `  <. q ,  p >. )  e.  ( 0 [,) a )  <->  <. q ,  p >.  e.  ( `' D "
( 0 [,) a
) ) ) )
2920, 27, 28syl2anc 667 . . . . . . 7  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  -> 
( ( D `  <. q ,  p >. )  e.  ( 0 [,) a )  <->  <. q ,  p >.  e.  ( `' D " ( 0 [,) a ) ) ) )
30 opelxpi 4866 . . . . . . . . . 10  |-  ( ( p  e.  X  /\  q  e.  X )  -> 
<. p ,  q >.  e.  ( X  X.  X
) )
3121, 30syl 17 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  ->  <. p ,  q >.  e.  ( X  X.  X
) )
3231, 26eleqtrrd 2532 . . . . . . . 8  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  ->  <. p ,  q >.  e.  dom  D )
33 fvimacnv 5997 . . . . . . . 8  |-  ( ( Fun  D  /\  <. p ,  q >.  e.  dom  D )  ->  ( ( D `  <. p ,  q >. )  e.  ( 0 [,) a )  <->  <. p ,  q >.  e.  ( `' D "
( 0 [,) a
) ) ) )
3420, 32, 33syl2anc 667 . . . . . . 7  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  -> 
( ( D `  <. p ,  q >.
)  e.  ( 0 [,) a )  <->  <. p ,  q >.  e.  ( `' D " ( 0 [,) a ) ) ) )
3517, 29, 343bitr3d 287 . . . . . 6  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  -> 
( <. q ,  p >.  e.  ( `' D " ( 0 [,) a
) )  <->  <. p ,  q >.  e.  ( `' D " ( 0 [,) a ) ) ) )
36 simpr 463 . . . . . . 7  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  ->  A  =  ( `' D " ( 0 [,) a ) ) )
3736eleq2d 2514 . . . . . 6  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  -> 
( <. q ,  p >.  e.  A  <->  <. q ,  p >.  e.  ( `' D " ( 0 [,) a ) ) ) )
3836eleq2d 2514 . . . . . 6  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  -> 
( <. p ,  q
>.  e.  A  <->  <. p ,  q >.  e.  ( `' D " ( 0 [,) a ) ) ) )
3935, 37, 383bitr4d 289 . . . . 5  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  -> 
( <. q ,  p >.  e.  A  <->  <. p ,  q >.  e.  A
) )
40 eqid 2451 . . . . . . . . 9  |-  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) )  =  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) )
4140elrnmpt 5081 . . . . . . . 8  |-  ( A  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) )  ->  ( A  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) )  <->  E. a  e.  RR+  A  =  ( `' D " ( 0 [,) a ) ) ) )
4241ibi 245 . . . . . . 7  |-  ( A  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) )  ->  E. a  e.  RR+  A  =  ( `' D " ( 0 [,) a ) ) )
4342, 1eleq2s 2547 . . . . . 6  |-  ( A  e.  F  ->  E. a  e.  RR+  A  =  ( `' D " ( 0 [,) a ) ) )
4443ad2antlr 733 . . . . 5  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  ->  E. a  e.  RR+  A  =  ( `' D " ( 0 [,) a ) ) )
4539, 44r19.29a 2932 . . . 4  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  ->  ( <. q ,  p >.  e.  A  <->  <.
p ,  q >.  e.  A ) )
46 df-br 4403 . . . . 5  |-  ( p `' A q  <->  <. p ,  q >.  e.  `' A )
47 vex 3048 . . . . . 6  |-  p  e. 
_V
48 vex 3048 . . . . . 6  |-  q  e. 
_V
4947, 48opelcnv 5016 . . . . 5  |-  ( <.
p ,  q >.  e.  `' A  <->  <. q ,  p >.  e.  A )
5046, 49bitri 253 . . . 4  |-  ( p `' A q  <->  <. q ,  p >.  e.  A
)
51 df-br 4403 . . . 4  |-  ( p A q  <->  <. p ,  q >.  e.  A
)
5245, 50, 513bitr4g 292 . . 3  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  ->  ( p `' A q  <->  p A
q ) )
53523impb 1204 . 2  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  /\  p  e.  X  /\  q  e.  X )  ->  (
p `' A q  <-> 
p A q ) )
546, 2, 53eqbrrdva 5004 1  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  ->  `' A  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1444    e. wcel 1887   E.wrex 2738    C_ wss 3404   <.cop 3974   class class class wbr 4402    |-> cmpt 4461    X. cxp 4832   `'ccnv 4833   dom cdm 4834   ran crn 4835   "cima 4837   Fun wfun 5576   -->wf 5578   ` cfv 5582  (class class class)co 6290   0cc0 9539   RR*cxr 9674   RR+crp 11302   [,)cico 11637  PsMetcpsmet 18954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-br 4403  df-opab 4462  df-mpt 4463  df-id 4749  df-po 4755  df-so 4756  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-er 7363  df-map 7474  df-en 7570  df-dom 7571  df-sdom 7572  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-xadd 11410  df-psmet 18962
This theorem is referenced by:  metust  21573
  Copyright terms: Public domain W3C validator