MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metustsym Unicode version

Theorem metustsym 18545
Description: Elements of the filter base generated by the metric  D are symmetric. (Contributed by Thierry Arnoux, 28-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metust.1  |-  F  =  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) )
Assertion
Ref Expression
metustsym  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  ->  `' A  =  A )
Distinct variable groups:    D, a    X, a    A, a    F, a

Proof of Theorem metustsym
Dummy variables  p  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metust.1 . . . 4  |-  F  =  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) )
21metustss 18537 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  ->  A  C_  ( X  X.  X
) )
3 cnvss 5004 . . . 4  |-  ( A 
C_  ( X  X.  X )  ->  `' A  C_  `' ( X  X.  X ) )
4 cnvxp 5249 . . . 4  |-  `' ( X  X.  X )  =  ( X  X.  X )
53, 4syl6sseq 3354 . . 3  |-  ( A 
C_  ( X  X.  X )  ->  `' A  C_  ( X  X.  X ) )
62, 5syl 16 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  ->  `' A  C_  ( X  X.  X ) )
7 simp-4l 743 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  ->  D  e.  (PsMet `  X
) )
8 simpr1r 1015 . . . . . . . . . . . 12  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  /\  (
( p  e.  X  /\  q  e.  X
)  /\  a  e.  RR+ 
/\  A  =  ( `' D " ( 0 [,) a ) ) ) )  ->  q  e.  X )
983anassrs 1175 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  -> 
q  e.  X )
10 simpr1l 1014 . . . . . . . . . . . 12  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  /\  (
( p  e.  X  /\  q  e.  X
)  /\  a  e.  RR+ 
/\  A  =  ( `' D " ( 0 [,) a ) ) ) )  ->  p  e.  X )
11103anassrs 1175 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  ->  p  e.  X )
12 psmetsym 18294 . . . . . . . . . . 11  |-  ( ( D  e.  (PsMet `  X )  /\  q  e.  X  /\  p  e.  X )  ->  (
q D p )  =  ( p D q ) )
137, 9, 11, 12syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  -> 
( q D p )  =  ( p D q ) )
14 df-ov 6043 . . . . . . . . . 10  |-  ( q D p )  =  ( D `  <. q ,  p >. )
15 df-ov 6043 . . . . . . . . . 10  |-  ( p D q )  =  ( D `  <. p ,  q >. )
1613, 14, 153eqtr3g 2459 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  -> 
( D `  <. q ,  p >. )  =  ( D `  <. p ,  q >.
) )
1716eleq1d 2470 . . . . . . . 8  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  -> 
( ( D `  <. q ,  p >. )  e.  ( 0 [,) a )  <->  ( D `  <. p ,  q
>. )  e.  (
0 [,) a ) ) )
18 psmetf 18290 . . . . . . . . . 10  |-  ( D  e.  (PsMet `  X
)  ->  D :
( X  X.  X
) --> RR* )
19 ffun 5552 . . . . . . . . . 10  |-  ( D : ( X  X.  X ) --> RR*  ->  Fun 
D )
207, 18, 193syl 19 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  ->  Fun  D )
21 simpllr 736 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  -> 
( p  e.  X  /\  q  e.  X
) )
2221ancomd 439 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  -> 
( q  e.  X  /\  p  e.  X
) )
23 opelxpi 4869 . . . . . . . . . . 11  |-  ( ( q  e.  X  /\  p  e.  X )  -> 
<. q ,  p >.  e.  ( X  X.  X
) )
2422, 23syl 16 . . . . . . . . . 10  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  ->  <. q ,  p >.  e.  ( X  X.  X
) )
25 fdm 5554 . . . . . . . . . . . 12  |-  ( D : ( X  X.  X ) --> RR*  ->  dom 
D  =  ( X  X.  X ) )
2618, 25syl 16 . . . . . . . . . . 11  |-  ( D  e.  (PsMet `  X
)  ->  dom  D  =  ( X  X.  X
) )
277, 26syl 16 . . . . . . . . . 10  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  ->  dom  D  =  ( X  X.  X ) )
2824, 27eleqtrrd 2481 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  ->  <. q ,  p >.  e. 
dom  D )
29 fvimacnv 5804 . . . . . . . . 9  |-  ( ( Fun  D  /\  <. q ,  p >.  e.  dom  D )  ->  ( ( D `  <. q ,  p >. )  e.  ( 0 [,) a )  <->  <. q ,  p >.  e.  ( `' D "
( 0 [,) a
) ) ) )
3020, 28, 29syl2anc 643 . . . . . . . 8  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  -> 
( ( D `  <. q ,  p >. )  e.  ( 0 [,) a )  <->  <. q ,  p >.  e.  ( `' D " ( 0 [,) a ) ) ) )
31 opelxpi 4869 . . . . . . . . . . 11  |-  ( ( p  e.  X  /\  q  e.  X )  -> 
<. p ,  q >.  e.  ( X  X.  X
) )
3221, 31syl 16 . . . . . . . . . 10  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  ->  <. p ,  q >.  e.  ( X  X.  X
) )
3332, 27eleqtrrd 2481 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  ->  <. p ,  q >.  e.  dom  D )
34 fvimacnv 5804 . . . . . . . . 9  |-  ( ( Fun  D  /\  <. p ,  q >.  e.  dom  D )  ->  ( ( D `  <. p ,  q >. )  e.  ( 0 [,) a )  <->  <. p ,  q >.  e.  ( `' D "
( 0 [,) a
) ) ) )
3520, 33, 34syl2anc 643 . . . . . . . 8  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  -> 
( ( D `  <. p ,  q >.
)  e.  ( 0 [,) a )  <->  <. p ,  q >.  e.  ( `' D " ( 0 [,) a ) ) ) )
3617, 30, 353bitr3d 275 . . . . . . 7  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  -> 
( <. q ,  p >.  e.  ( `' D " ( 0 [,) a
) )  <->  <. p ,  q >.  e.  ( `' D " ( 0 [,) a ) ) ) )
37 simpr 448 . . . . . . . 8  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  ->  A  =  ( `' D " ( 0 [,) a ) ) )
3837eleq2d 2471 . . . . . . 7  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  -> 
( <. q ,  p >.  e.  A  <->  <. q ,  p >.  e.  ( `' D " ( 0 [,) a ) ) ) )
3937eleq2d 2471 . . . . . . 7  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  -> 
( <. p ,  q
>.  e.  A  <->  <. p ,  q >.  e.  ( `' D " ( 0 [,) a ) ) ) )
4036, 38, 393bitr4d 277 . . . . . 6  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  /\  a  e.  RR+ )  /\  A  =  ( `' D "
( 0 [,) a
) ) )  -> 
( <. q ,  p >.  e.  A  <->  <. p ,  q >.  e.  A
) )
41 simplr 732 . . . . . . 7  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  ->  A  e.  F )
42 eqid 2404 . . . . . . . . . 10  |-  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) )  =  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) )
4342elrnmpt 5076 . . . . . . . . 9  |-  ( A  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) )  ->  ( A  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) )  <->  E. a  e.  RR+  A  =  ( `' D " ( 0 [,) a ) ) ) )
4443ibi 233 . . . . . . . 8  |-  ( A  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) )  ->  E. a  e.  RR+  A  =  ( `' D " ( 0 [,) a ) ) )
4544, 1eleq2s 2496 . . . . . . 7  |-  ( A  e.  F  ->  E. a  e.  RR+  A  =  ( `' D " ( 0 [,) a ) ) )
4641, 45syl 16 . . . . . 6  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  ->  E. a  e.  RR+  A  =  ( `' D " ( 0 [,) a ) ) )
4740, 46r19.29a 2810 . . . . 5  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  ->  ( <. q ,  p >.  e.  A  <->  <.
p ,  q >.  e.  A ) )
48 df-br 4173 . . . . . 6  |-  ( p `' A q  <->  <. p ,  q >.  e.  `' A )
49 vex 2919 . . . . . . 7  |-  p  e. 
_V
50 vex 2919 . . . . . . 7  |-  q  e. 
_V
5149, 50opelcnv 5013 . . . . . 6  |-  ( <.
p ,  q >.  e.  `' A  <->  <. q ,  p >.  e.  A )
5248, 51bitri 241 . . . . 5  |-  ( p `' A q  <->  <. q ,  p >.  e.  A
)
53 df-br 4173 . . . . 5  |-  ( p A q  <->  <. p ,  q >.  e.  A
)
5447, 52, 533bitr4g 280 . . . 4  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  /\  (
p  e.  X  /\  q  e.  X )
)  ->  ( p `' A q  <->  p A
q ) )
5554ex 424 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  ->  (
( p  e.  X  /\  q  e.  X
)  ->  ( p `' A q  <->  p A
q ) ) )
56553impib 1151 . 2  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  /\  p  e.  X  /\  q  e.  X )  ->  (
p `' A q  <-> 
p A q ) )
576, 2, 56eqbrrdva 5001 1  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  ->  `' A  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   E.wrex 2667    C_ wss 3280   <.cop 3777   class class class wbr 4172    e. cmpt 4226    X. cxp 4835   `'ccnv 4836   dom cdm 4837   ran crn 4838   "cima 4840   Fun wfun 5407   -->wf 5409   ` cfv 5413  (class class class)co 6040   0cc0 8946   RR*cxr 9075   RR+crp 10568   [,)cico 10874  PsMetcpsmet 16640
This theorem is referenced by:  metust  18551
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-po 4463  df-so 4464  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-xadd 10667  df-psmet 16649
  Copyright terms: Public domain W3C validator